簡易檢索 / 詳目顯示

研究生: 鄭民豐
Ming-Feng Zheng
論文名稱: 多種微帶線至基板合成波導轉接之阻抗匹配設計
Various Impedance Matching Design for Microstrip to Substrate Integrated Waveguide Transition
指導教授: 王蒼容
Chun-Long Wang
口試委員: 吳瑞北
Ruey-Beei Wu
楊成發
Chang-Fa Yang
謝松年
Sung-Nien Hsieh
王蒼容
Chun-Long Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 107
中文關鍵詞: 微帶線基板合成波導轉接阻抗匹配場型匹配
外文關鍵詞: Microstrip, Substrate Integrated Waveguide, Transition, Impedance Matching, Field Matching
相關次數: 點閱:285下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以印刷電路板技術實現電感與電容元件,達成小型化且寬頻的微帶線至基板合成波導轉接,分別討論三種高阻抗微帶線至低阻抗基板合成波導的轉接結構以及三種低阻抗微帶線至高阻抗基板合成波導的轉接結構。
    關於三種高阻抗微帶線至低阻抗基板合成波導的轉接結構,首先,第一種使用直接轉接的長度為0 mm,在X-band (8.2-12.4 GHz)中,其-20 dB反射係數頻寬只有19.08%。第二種我們使用微帶線開路殘段轉接結構,其-20 dB反射係數頻寬為48.21%,相當寬頻,幾乎涵蓋整個X-band (8.2-12.4 GHz),轉接電路長度為2.3 mm。第三種我們使用基板合成波導開路殘段的結構做轉接,電路長度可以縮短為1.4 mm,而其-20 dB反射係數頻寬有49.7%,在頻寬表現上也是相當良好,並且輻射量減少1.88%,最後,我們以背對背的結構的方式進行量測,並使用TRL校準去除SMA效應,驗證結果正確性。
    關於三種低阻抗微帶線至高阻抗基板合成波導轉接結構,第一種使用直接轉接的長度為0 mm,但是在Ku-band (12.4-18 GHz)中,其-20 dB反射係數頻寬只有23.09%。第二種使用基板合成波導短路殘段之轉接結構,其-20 dB反射係數頻寬有40.9%,頻寬相當寬頻,但轉接電路長度稍長為4.1 mm。第三種使用基板合成波導指叉型電容轉接,其-20 dB反射係數頻寬有37.06%,頻寬相當寬頻,且轉接的電路長度減少為1.7 mm,最後,我們使用背對背結構的方式進行量測,並使用TRL校準去除SMA所造成的接頭效應,驗證模擬結果的正確性。
    為了降低板材的損耗,高階的板材是必須的,而板材成本也會跟著提高,小型化的設計能夠直接降低板材的成本,因此,本論文探討了許多種減少電路面積之設計,以提升實務上的價值。


    his thesis employs the printed circuit board (PCB) technology to realize the lumped inductance and capacitance elements, accomplishing a compact and broadband microstrip line to substrate-integrated waveguide transition. These transitions include three high-impedance microstrip line to low-impedance substrate-integrated waveguide transitions and three low-impedance microstrip line to high-impedance substrate-integrated waveguide transitions.
    Concerning the three high-impedance microstrip line to low-impedance substrate-integrated waveguide transitions, the simplest is the direct microstrip line to substrate-integrated waveguide transition, which has a transition length of 0 mm. However, the -20-dB fractional bandwidth is only 19.08%, which can only cover part of the X-band (8.2-12.4 GHz). To increase the fractional bandwidth, the microstrip line to substrate-integrated waveguide transition using the microstrip line open-circuited stub is proposed. The -20-dB fractional bandwidth is increased to 48.21%, which covers the entire X-band (8.2-12.4 GHz), and the transition length is 2.3 mm. To decrease the transition length, the microstrip line to substrate-integrated waveguide transition using the substrate-integrated waveguide open-circuited stub is proposed. The -20-dB fractional bandwidth is increased to 49.7%, which covers the entire X-band (8.2-12.4 GHz), while the transition length is reduced to 1.4 mm. Also, the radiation loss is solely 1.88%. Back-to-back microstrip line to substrate integrated waveguide transitions are fabricated and measured with the TRL calibration to verify these results. The simulation and measurement results are in reasonable agreement.
    Concerning the three low-impedance microstrip line to high-impedance substrate-integrated waveguide transitions, the simplest is the direct microstrip line to substrate-integrated waveguide transition, which has a transition length of 0 mm. However, the -20-dB fractional bandwidth is only 23.09%, which can only cover part of the Ku-band (12.4-18 GHz). To increase the fractional bandwidth, the microstrip line to substrate-integrated waveguide transition using the substrate-integrated waveguide short-circuited stub is proposed. The -20-dB fractional bandwidth is increased to 40.9%, which covers the entire Ku-band (12.4-18 GHz), and the transition length is 4.1 mm. To decrease the transition length, the microstrip line to substrate-integrated waveguide transition using the substrate-integrated waveguide interdigital capacitor is proposed. Although the -20-dB fractional bandwidth is reduced to 37.06%, it still covers the Ku-band (12.4-18 GHz). The transition length is reduced to 1.7 mm. Back-to-back microstrip line to substrate-integrated waveguide transitions are fabricated and measured with the TRL calibration to verify these results. The simulation and measurement results are in reasonable agreement.
    Although low-loss advanced substrates are necessary to reduce the transition loss, they are costly. To minimize the cost, the transition length should be miniaturized. Therefore, this thesis proposes several compact and broadband microstrip line to substrate-integrated waveguide transitions to accomplish this goal.

    目錄 摘要 I Abstract II 致謝 IV 目錄 V 表目錄 VIII 圖目錄 IX 第一章 簡介 1 1.1 研究動機 1 1.2 文獻探討 2 1.3 貢獻 10 1.4 論文架構 11 第二章 高阻抗微帶線至低阻抗基板合成波導轉接 12 2.1 直接微帶線至基板合成波導轉接 13 2.1.1 轉接結構 13 2.1.2 轉接設計之分析與驗證 15 2.1.2.1 單一轉接分析 15 2.1.2.2 背對背轉接驗證 19 2.2 使用微帶線開路殘段之轉接 21 2.2.1 轉接結構 21 2.2.2 轉接設計之分析與驗證 23 2.2.2.1等效電路設計 24 2.2.2.2電路實現分析 28 2.2.2.3背對背結構驗證 32 2.3 使用基板合成波導開路殘段之轉接 34 2.3.1 轉接結構 34 2.3.2 轉接設計之分析與驗證 36 2.3.2.1電路實現分析 37 2.3.2.2背對背結構驗證 41 2.4 小結 43 第三章 低阻抗微帶線至高阻抗基板合成波導轉接 45 3.1 直接微帶線至基板合成波導轉接 46 3.1.1 轉接結構 46 3.1.2 轉接設計之分析與驗證 48 3.1.2.1 單一轉接分析 48 3.1.2.2 背對背結構驗證 52 3.2 使用基板合成波導短路殘斷之轉接 54 3.2.1 轉接結構 54 3.2.2 轉接設計之分析與驗證 56 3.2.2.1 等效電路設計 57 3.2.2.2 電路實現分析 61 3.2.2.3 背對背結構驗證 66 3.3 使用基板合成波導指叉型電容之轉接 54 3.3.1 轉接結構 68 3.3.2 轉接設計之分析與驗證 70 3.3.2.1 等效電路設計 72 3.3.2.2 電路實現分析 76 3.3.2.3 背對背結構驗證 81 3.4 小結 83 第四章 結論 85 參考資料 88 附錄A 90

    [1] K. S. Packard, “The Origin of Waveguides: A Case of Multiple Rediscovery,” IEEE Trans. Microw. Theory Tech., vol. 32, no. 9, pp. 961-969, Sep. 1984.
    [2] J. Guo, T. Djerafi, and K. Wu, “Mode composite waveguide,” IEEE Trans. Microw. Theory Tech., vol. 64, no. 10, pp. 3187-3197, Oct. 2016.
    [3] D. D. Grieg and H. F. Engelmann, “Microstrip-a new transmission technique for the klilomegacycle range, ” in Proceedings of the IRE, vol. 40, no. 12, Dec. 1952, pp. 1644-1650.
    [4] C. P. Wen, “Coplanar waveguide, a surface strip transmission line suitable for nonreciprocal gyromagnetic device applications,” in Proc. IEEE MTT-S Int. Microw. Symp., Dallas, TX, USA, 1969, pp. 110-115.
    [5] E. A. Mariani, C. P. Heinzman, J. P. Agrios, and S. B. Cohn, “Slot line characteristics,” IEEE Trans. Microw. Theory Tech., vol. 17, no. 12, pp. 1091-1096, December 1969.
    [6] F. Xu and K. Wu, “Guided-wave and leakage characteristics of substrate integrated waveguide,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 1, pp. 66-73, Jan. 2005.
    [7] D. Deslandes and K. Wu, “Design consideration and performance analysis of substrate integrated waveguide components,” 32nd European Microwave Conference, Milan, Italy, 2002, pp. 1-4.
    [8] D. Deslandes, “Design equations for tapered microstrip-to-substrate integrated waveguide transitions,” in Proc. IEEE MTT-S Int. Microw. Symp., May 2010, pp. 704-707.
    [9] H. Zhong, X. Li, and J. Mao, “An optimal approach in design of microstrip-to-SIW transition using Bayesian optimization,” Int. Conf. on Microw. and Millim. Wave Techn. (ICMMT), Shanghai, China, 2020, pp. 1-3.
    [10] E. Miralles, H. Esteban, C. Bachiller, A. Belenguer, and V. E. Boria, “Improvement for the design equations for tapered microstrip-to-substrate integrated waveguide transitions,” International Conference on Electromagnetics in Advanced Applications, Turin, Italy, 2011, pp. 652-655.
    [11] Z. Wang and C.-W. Park, “Novel substrate integrated waveguide (SIW) type high power amplifier using microstrip-to-SIW transition,” in Proc. Asia-Pacific Microw. Conf., Seoul, Korea (South), 2013, pp. 101-103.
    [12] B. Kunooru, S. V. Nandigama, D. Rama Krishna, R. Gugulothu, and S. Bhalke, “Studies on microstrip to SIW transition at Ka-band,” Int. Con. on Microw. Inte. Circuits, Photonics and Wireless Networks (IMICPW), Tiruchirappalli, India, 2019, pp. 379-382.
    [13] M. Abdolhamidi, A. Enayati, M. Shahabadi, and R. Faraji-Dana, “Wideband single-layer DC-decoupled substrate integrated waveguide (SIW)-to-microstrip transition using an interdigital configuration,” in Proc. Asia-Pacific Microw. Conf., Dec. 2007, pp. 1-4.
    [14] S. Moitra, B. Mondal, J. Kundu, A. K. Mukhopadhyay, and A. K. Bhattacharjee, “Substrate integrated waveguide (SIW) filter using stepped-inductive posts for Ku-band applications,” Int. Conf. on Comp. Inte. and Inf. Tech., Oct. 2013, pp. 398-401.
    [15] H. Esteban, A. Belenguer, J. R. Sánchez, C. Bachiller, and V. E. Boria, “Improved low reflection transition from microstrip line to empty substrate-integrated waveguide,” IEEE Microw. and Wireless Compon. Lett., vol. 27, no. 8, pp. 685-687, Aug. 2017.
    [16] E. D. Caballero, A. B. Martinez, H. E. Gonzalez, O. M. Belda, and V. B. Esbert, “A novel transition from microstrip to a substrate integrated waveguide with higher characteristic impedance,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2013.
    [17] D.-S. Eom and H.-Y. Lee, “Substrate integrated waveguide transitions to planar transmission lines using lumped elements and their applications,” IEEE Trans. Microw. Theory Tech., vol. 64, no. 12, pp. 4352-4361, Dec. 2016.
    [18] Z. Liu and G.-B. Viao, “A new transition for SIW and microstrip line” in Proc. Asia-Pacific Microw. Conf., Nov. 2013, pp. 948-950.
    [19] H. Nam, T.-S. Yun, K.-B. Kim, K.-C. Yoon, and J.-C. Lee, “Ku-band transition between microstrip and substrate integrated waveguide (SIW)”, in Proc. Asia-Pacific Microw. Conf., Dec. 2005, pp. 1-4.

    無法下載圖示 全文公開日期 2025/07/28 (校內網路)
    全文公開日期 2025/07/28 (校外網路)
    全文公開日期 2025/07/28 (國家圖書館:臺灣博碩士論文系統)
    QR CODE