簡易檢索 / 詳目顯示

研究生: 翁士傑
Shi-Jie Weng
論文名稱: 局部多孔質柱塞式氣靜壓軸承之性能分析與研究
Numerical Analysis on the Performance of Partial Porous Aerostatic Bearing
指導教授: 林顯群
Sheam-Chyun Lin
口試委員: 陳呈芳
none
黃德言
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 245
中文關鍵詞: 多孔質材料氣靜壓軸承軸頸軸承止推軸承承載能力進氣壓力多孔質柱塞個數
外文關鍵詞: Porous Media, Aerostatic Bearing, Journal Bearing, Thrust Bearing, Loading Capacity, Inlet Pressure, Number of Porous Insert
相關次數: 點閱:238下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  氣靜壓軸承係利用加壓空氣填充轉軸與軸承的間隙,提供主軸適當的潤滑與阻尼,具有取得成本低、磨擦小、不易發熱、潔淨、高旋轉精度、運轉平穩、器材損耗率低、壽命長等優點,因此已應用於超精密的航太、半導體、工具機與測量儀器等領域。其中,小孔節流和全多孔質材料節流是氣靜壓軸承主要的節流形式,而局部多孔質材料節流是結合前兩者所產生的新節流方式,具有結構簡單、剛性強的特點,唯針對此種節流的研究較少,故存在許多探討的空間,本研究將針對「局部多孔質軸頸軸承」和「局部多孔質止推軸承」之性能進行探討,供日後在設計研發氣靜壓軸承時之參考依據。本研究主要利用計算流體力學軟體Fluent進行分析,在忽略熱傳與重力效應的前提下,建立流體模型去分析軸承間隙內之氣膜壓力分佈,同時為了確保網格密度而利用模型的可分割性,分割出同樣也足以表達其物理現象的局部模型,再調整各項設計參數以探討其對軸承之各性能之影響。
  在「軸頸軸承」的研究中,調整的參數為主軸偏心距離、進氣壓力、進氣排間距和排數、柱塞個數與分佈。而在「止推軸承」的研究中,調整的參數為進氣壓力和柱塞個數與分佈。模擬結果顯示,隨著主軸轉速上升,主軸在承受徑向負載時所產生的偏心將越偏離負載方向;當進氣壓力愈大,主軸剛性雖然會增加,但效益卻會遞減,同時軸承的阻尼均勻性將降低,可能導致主軸的不穩定性增加;當進氣排的間距較遠時,則能拉大軸向間距以增加氣膜高壓涵蓋面積,進而提升軸承負載,而增加進氣排的數量雖也能提升負載能力,但效果不如前者明顯,主要在於給予更穩定均勻之阻尼,而增加單列進氣排上之柱塞個數也具有類似效果,但影響範圍不同,其主要功用在於令軸承在圓周方向的阻尼更加均勻。


  Air bearings are bearings that use a thin film of pressurized air to provide an extremely-low-friction interface inside the gap between spindle and bearing. Because these two surfaces do not contact, air bearings can prevent the traditional bearing-related problems of friction, wear, and lubricant handling, and offer key advantages in precision positioning; thus air bearings are being utilized in precision machinery tools recently. This study utilizes the commercial CFD software Fluent to solve the compressible, three dimensional Navier-Stokes equations for calculating the fluid pressure inside the air bearing, and investigates the performances of the porous-media aerostatic journal and thrust bearings via the flow simulation. Later, an in-depth parametric study is executed systematically to evaluate the corresponding effects on bearing characteristics, such as the pressure distribution, the average surface pressure and the stiffness on spindle. The important parameters considered here include the rotational speed of spindle, the eccentric ratio, the input air pressure, the separated distance and the number of porous inserts in both axial and circumferential directions.
  As a result, numerical simulation indicates that the increase of loading capacity is proportional to the eccentric angle, which occurs frequently under a high-speed spindle rotation, say 60,000 rpm. Also, the average pressure on spindle surface is a proportional function of the input air pressure, and the damping uniformity of axis is inversely proportional to the inlet air pressure. In addition, the average pressure on spindle surface becomes bigger when the porous inserts are separated further in axial direction. However, the porous insert number in both circumferential and axial direction has minor effect on the average pressure of spindle surface. In fact, increasing insert number only enhances the stable and uniform damping on the spindle. In summary, this numerical investigation considers many parameters for enhancing the pressure and the stiffness of thrust bearing and journal bearing. Also, the physical phenomenon of dynamic-pressure effect inside the porous bearing is analyzed comprehensively for the high-speed spindle case, which can serve as a vital design reference for many engineering applications.

摘要 Abstract 誌謝 目錄 圖索引 表索引 符號索引 第一章 緒論 1.1前言 1.2 文獻回顧 1.2.1多孔質材料在氣靜壓止推軸承之應用 1.2.2多孔質材料在氣靜壓軸頸軸承之應用 1.3 研究動機與方法 1.4 論文綱要 第二章 多孔質氣靜壓軸承之設計 2.1 氣靜壓軸承之工作原理 2.2 氣靜壓軸承節流器型式 2.3 多孔質材料 2.4 多孔質氣靜壓軸承簡介 2.5多孔質氣靜壓軸承解析數學模型 2.5.1 多孔質材料內壓力分佈之推導 2.5.2 多孔質氣靜壓軸承氣隙內壓力分佈之推導 2.5.3 局部多孔質氣靜壓軸承氣隙內壓力分佈之推導 第三章 物理模型與數值方法 3.1 統御方程式 3.2 數值計算理論 3.2.1 離散化方式 3.2.2 速度與壓力耦合的處理 3.3 數值求解流程 3.4 紊流模式 3.5壁面函數 3.6 邊界條件設定 第四章 多孔質氣靜壓軸承之網格與幾何模型 4.1模型建立 4.2網格建構與網格獨立性分析 4.2.1網格建構 4.2.2網格獨立性分析 4.3模型可分割性驗證 4.3.1模型分割概念介紹 4.3.2模型可分割性驗證 第五章 軸頸軸承之數值模擬分析 5.1 不同主軸偏心距離之軸承性能 5.2 不同進氣壓力之軸承性能 5.3 不同進氣排間距之軸承性能 5.4 不同進氣排數之軸承性能 5.5 不同多孔質柱塞數之軸承性能 第六章 止推軸承之數值模擬分析 6.1 不同進氣壓力下之軸承性能 6.2 不同多孔質柱塞數之軸承性能 第七章 結論與建議 7.1 結論 7.1.1 局部多孔質氣靜壓軸頸軸承之分析結果 7.1.2 局部多孔質氣靜壓止推軸承之分析結果 7.2 建議 參考文獻

[1] 十合晉一,“氣體軸承從設計到製造”,復漢出版社,1985年。
[2] 歐陽渭城,“靜壓軸承-設計與應用”,機械技術出版社,1998年。
[3] 趙惠英,田世傑,蔣莊德,“高精度氣體靜壓軸承剛度分析”,製造技術與機床,第11期,21-23頁,2003年。
[4] 盧澤生,于雪梅,“基於分形理論多孔質石墨滲透率的研究”,製造技術與機床,第7期,29-31頁,2006年。
[5] Yong, T., “Static Study of the Porous Bearings by the Simplified Finite Element Analysis”, Wear, Vol. 218, No. 2, pp. 203-209, 1998.
[6] New Way Air Bearings website, www.newwayairbearings.com.
[7] Lin, J. R. and Hwang, C. C., “Hop Bifurcation to a Short Porous Journal Bearing System Using the Brinkman Model: Weakly Nonlinear Stability”, Tribology International, Vol. 35, No. 3, pp. 75-84, 2002.
[8] Willis, R., “On the Pressure Produced on a Flat Plate When Opposed to a Stream of Air Issuing from an Orifice in a Plane Surface”, Trans. Cambridge Phil. Soc., Vol. 3, Part 1, pp. 121-140, 1828.
[9] Hirn, G. A., “Sur les Pricipaux Phenomenes qui Presententles Frottement Mediats”, Bull. Soc. Ind. Mulhous, Vol. 26, No.129, 1854.
[10] Reynolds, O., “On Theory of Lubrication and Its Application to Mr. Beauchamp Tower’s Experiments Including an Experimental Determination of the Viscosity of Olive Oil”, Phil. Trans. R. Soc. A., Vol. 177, 1886.
[11] Mongomery, A. G. and Sterry, F., “A Simple Air Bearing Rotor for Very High Rotational Speeds”, Atomic Energy Research Establishment, Harwell, Berks, England, AERE ED/R 1617, 1955.
[12] Sheinberg, S. A. and Shuster, V. G., “Resistance to Vibration of Hydrostatic Thrust Bearing”, Machine Tool, Vol. 31, No. 11, pp. 24-32, 1960.
[13] Garguilo, E. P. and Gilmour, P. W., “A Numerical Solution for the Design of Externally Pressurized Porous Gas Bearings”, Trans. ASME Journal Lub Tech, No. 10, pp. 810-817, 1968.
[14] Ishizawa, S. and Hori, E., “The Flow of a Viscous Fluid through a Porous Wall into a Narrow Gap”, Bul. JSME, Vol. 9, No. 36, pp. 810-817, 1966.
[15] Beavers, G. S. and Joseph, D. D., “Boundary Conditions at a Naturally Permeable Wall”, Journal of Fluid Mechanics, Vol. 30, No. 1, pp. 197-207, 1967.
[16] Prakash, J. and Vij, S. K., “Axially Undefined Porous Journal Bearings Considering Cavitation”, Wear, Vol. 22, pp. 1-14, 1972.
[17] Sparrow, E. M., Beavers, G. S. and Hwang, I. T., “Effect of Velocity Slip on Porous Walled Squeeze Films”, J. Lubr. Technol., Vol. 94, No. 3, pp. 260-265, 1972.
[18] Prakash, J. and Vij, S. K., “Effect of Velocity Slip in Axially Undefined Porous Bearings”, Wear, Vol. 38, pp. 245-263, 1976.
[19] Singh, K. C. and Rao, N. S., “Analysis of Aerostatic Porous Annular Thrust Bearings with Tilt”, Wear, Vol. 80, pp. 291-299, 1982.
[20] Singh, K. C., and Rao, N. S., “Static Characteristics of Aerostatic Porous Rectangular Thrust Bearings”, Wear, Vol. 77, pp. 229-236, 1982.
[21] Singh, K. C., Rao, N. S. and Majumdar, B. C., “Effect of Velocity Slip on the Performance of Aerostatic Porous Thrust Bearings with Uniform Film Thickness”, Wear, Vol. 88, pp. 323-333, 1983.
[22] Singh, K. C., Rao, N. S. and Majumdar, B. C., “Effects of Velocity Slip, Anisotropy and Tilt on the Steady State Performance of Aerostatic Porous Annular Thrust Bearings”, Wear, Vol. 97, pp. 51-63, 1984.
[23] Fourka, Mohamed and Bonis, Marc, “Comparison between Externally Pressurized Gas Thrust Bearings with Different Orifice and Porous Feeding Systems”, Wear, Vol. 210, pp. 311-317, 1997.
[24] Kwan, Y B P and Corbett, J., “A Simplified Method for the Correction of Velocity Slip and Inertia Effects in Porous Aerostatic Thrust Bearing”, Tribology International, Vol. 31, No.12, pp. 779-786, 1998.
[25] Luong, T.S., Potze, W., Post, J.B., van Ostayen, R.A.J., and van Beek, A., “Numerical and Experimental Analysis of Aerostatic Thrust Bearings with Porous Restrictors”, Tribology International, No. 10, Vol. 37, pp. 825-832, 2004.
[26] Plante, J. S., Vogan, J., Tarek, E. A. and Slocum, A. H., “A Design Model for Circular Porous Air Bearings Using the 1D Generalized Flow Method”, Precision Engineering, Vol. 29, pp. 336-346, 2005.
[27] 董乙霏,“多孔質氣靜壓軸承靜態性能分析”,天津大學機械製造及其自動化研究所碩士論文,2007年。
[28] Wu, D. Z. and Tao, J. Z., “Analysis on the Static Performance of Porous Graphite Aerostatic Thrust Bearings”, International Conference on Computer Engineering and Technology, Vol. 5, pp. 112-115, 2010.
[29] 王彥欣,陳明飛,“氣靜壓主軸只推軸承設計與性能分析”,中國機械工程學會,第十七屆全國學術研討會論文集,2000。
[30] 林育廷,陳明飛,“具X型配流槽氣勁壓軸承性能分析與應用”,中國機械工程學會,第十七屆全國學術研討會論文集,2000。
[31] 王彥欣,“氣靜壓主軸止推軸承之動壓效應分析與設計”,彰化師範大學工業教育研究所碩士論文,2000。
[32] Sneck, H. J. and Elwell, R. C., “The Externally Pressurized, Porous Wall, Gas-Lubricated Journal Bearing – II,” ASLE Trans., Vol. 8, No. 4, pp. 339-345, 1965.
[33] Majumdar, B. C., “Analysis of Externally Pressurized Porous Gas Journal Bearings-2”, Wear, Vol. 33, No. 1, pp. 37-43, 1975.
[34] Majumdar, B.C., “Whirl instability of externally pressurized gas-lubricated porous journal bearings”, Wear, Vol. 40, No. 2, pp. 141-153, 1976.
[35] Rao, N. S. and Majumdar, B. C., “Dynamic Characteristics of Gas-Lubricated Externally Pressurized Porous Bearings with Journal Rotation I”, Journal of Lubrication Technology, Wear, Vol. 50, No. 1, pp. 59-70, 1978.
[36] Rao, N. S. and Majumdar, B. C., “Dynamic Characteristics of Gas-Lubricated Externally Pressurized Porous Bearings with Journal Rotation II”, Journal of Lubrication Technology, Wear, Vol. 50, No. 2, pp. 201-210, 1978.
[37] Szwarcman, M. and Gorez, R., “Design of Aerostatic Journal Bearings with Partially Porous Walls”, International Journal of Machine Tool Design and Research, Vol. 18, pp. 49-58, 1978.
[38] Majumder, M. C. and Majumdar, B. C., “Analysis of Pneumatic Instability of Externally Pressurized Porous Gas Journal Bearings”, Journal of Lubrication Technology, Transactions ASME, Vol. 101, No. 1, pp. 48-53, 1979.
[39] Rao, N. S., “Analysis of Aerostatic Porous Journal Bearings Using the Slip Velocity Boundary Conditions”, Wear, Vol. 76, No. 1, pp. 35-47, 1982.
[40] Singh, K. C., Rao, N. S., and Majumdar, B. C., “Effect of Slip Flow on the Steady State Performance of Aerostatic Porous Journal Bearings”, Journal of Tribology, Transactions of the ASME, Vol. 106, No. 1, pp. 156-162, 1984.
[41] Malik, M. and Rodkiewicz, C. M., “On Slip Flow Considerations in Gas Lubricated Porous Bearings”, Journal of Tribology, Transactions of ASME, Vol. 106, No. 4, pp. 484-491, 1984.
[42] Malik, M. and Rodkiewicz, C. M., “Dynamical Behaviour of Externally Pressurized Gas-Lubricated Unloaded Porous Journal Bearings”, Proceedings of the Institution of Mechanical Engineers, Part C: Mechanical Engineering Science, Vol. 198, No. 4, pp. 33-41, 1984.
[43] Majumder, M. C. and Majumdar, B. C., “Theoretical Analysis of Pneumatic Instability of Externally Pressurized Porous Gas Journal Bearings Considering Velocity Slip”, Journal of Tribology, Vol. 110, No. 4, pp. 730-733, 1988.
[44] Majumder, M. C. and Majumdar, B. C., “Non-Linear Transient Analysis for an Externally Pressurized Porous Gas Journal Bearing”, Wear, Vol. 132, No. 1, pp. 139-150, 1989.
[45] Yoshimoto, S., Tozuka, H. and Dambara, S., “Static Characteristics of Aerostatic Porous Journal Bearings with a Surface-Restricted Layer”, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, Vol. 217, No. 2, pp. 125-132, 2003.
[46] 王建敏,“超精密氣體靜壓軸系部分關鍵技術研究”,國防科學技術大學機械工程研究所博士論文,2007年。
[47] Hassini, M. A. and Mihai, Arghir, “A Simplified Nonlinear Transient Analysis Method for Gas Bearings”, Journal of Lubrication Technology, Transactions ASME, Vol. 134, No. 1, pp. 1-12, 2012.
[48] 陳育斌,“氣體靜壓軸承動態性能分析與實驗研究”,大葉大學機械工程研究所碩士論文,1998年。
[49] 黃韋倫,“高速氣靜壓主軸暨其軸承系統性能分析與實驗研究”,彰化師範大學機電工程研究所博士論文,2012年。
[50] 王柏智,“多孔質氣靜壓軸承之性能模擬與實驗研究”,國立台灣科技大學機械工程系研究所碩士論文,2014年。
[51] 沈頌,“多孔質氣靜壓軸承靜動態特性之性能分析”,國立台灣科技大學機械工程系研究所碩士論文,2015年。
[52] Chang, S. H., Chan, C. W. and Jeng, Y. R., “Discharge Coefficients in Aerostatic Bearings with Inherent Orifice-Type Restrictors”, Journal of Tribology, Vol. 137, January 2015.
[53] 王正青,“2014年全球工具機代表性國家產銷報導”,台灣機械工業同業公會,2015年。
[54] 王雲飛,“氣體潤滑機理與氣體軸承設計”,機械工業出版社,1999。
[55] 于雪梅,“局部多孔質氣體靜壓軸承關鍵技術的研究”,哈爾濱工業大學博士論文,2007。
[56] Dullien, F. A. L., “Porous Media:Fluid Transport and Pore Structure”, Academic Press, 1992.
[57] 李柏勳,“非接觸是多孔氣浮平臺參數設計之研究”,大葉大學工業工程與科技管理學系碩士論文,2010。
[58] Kumar, A. and Rao, N. S., “Steady State Performance of Finite Hydrodynamic Porous Journal Bearings in Turbulent Regimes”, Wear, Vol. 167, No. 2, pp. 121-126, 1993.
[59] Patankar, S. V. and Spalding, D. B., "A Calculation Procedure for Heat Mass and Momentum Transfer in Three-Dimensional Parabolic Flows", International Journal of Heat Mass Transfer, Vol. 15, pp. 1787-1806, 1972.
[60] Micromeritics Instrument Corporation website, www.micromeritics.com.

QR CODE