簡易檢索 / 詳目顯示

研究生: 陳冠菩
Kuan-Pu Chen
論文名稱: 二硫化鉬奈米片的濃度效應對聚偏二氟乙烯獨立式壓電複合薄膜材料的影響
Concentration Effect of Few-layer MoS2 on PVDF Free-standing Piezoelectric Composite Film
指導教授: 洪伯達
Po-Da Hong
江少華
Adhimoorthy Prasannan
口試委員: 沙惟能
Adhimoorthy Saravanan
武德勝
Duc-Thang Vo
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 58
中文關鍵詞: 二硫化鉬聚偏二氟乙烯液相剝離法壓電式奈米發電機
外文關鍵詞: molybdenum disulfide, polyvinylidene fluoride, liquid-phase exfoliation, piezoelectric nanogenerator
相關次數: 點閱:314下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來由於壓電材料能夠於機械能和電能間互相轉換的性質而在電子應用 領域得到了廣泛之應用。其中壓電材料聚偏二氟乙烯(PVDF)具有出色的機械韌 性、重量輕和低介電常數等特性,是柔性電子產品中的支柱。然而工業製造的聚 壓電聚偏二氟乙烯中缺乏極性的電活性(electroactive)相而限制了其在壓電材料 中的潛在應用。在高分子基體中加入納米填料是增強極性相的有效方法。近期來, 人們因二維過渡金屬二硫化物(TMD)其獨特的結構和電性能而對可用於能源採 集的材料興趣日益濃厚。在本論文中,通過液相剝離(LPE)二硫化鉬(MoS2) 獲得 的少層的二維二硫化鉬(MoS2),並將其引入聚偏二氟乙烯基質中使用溶劑澆鑄法 製造基於二硫化鉬/聚偏二氟乙烯的獨立式柔性壓電薄膜。
    透過 X 光繞射(XRD)和穿透式電子顯微鏡(TEM)可證明二硫化鉬僅有少層 結構,而紫外光-可見光(UV-vis)估算出能帶約 1.88 eV。透過製造不同濃度剝離 的二硫化鉬的壓電複合薄膜來評估剝離的二硫化鉬奈米片對聚偏二氟乙烯的影 響。並透過傅里葉變換紅外光譜(FTIR)、拉曼光譜和 X 光繞射(XRD)研究了填料 含量效應引起的結構演變。結果顯示當添加 5wt%的二硫化鉬時,電活性相含量 提高到 77.9%。此外二硫化鉬/聚偏二氟乙烯複合薄膜的電學性質也藉由 LCR 量 測儀來分析。介電譜和電模量譜表明,添加二硫化鉬可增加載流子於聚偏二氟乙 烯中的遷移率。此外,二硫化鉬/聚偏二氟乙烯複合薄膜被用於製造壓電奈米發電機(PENG)傳感器裝置,並透過在衝擊測試方法下測量輸出電壓來評估其壓電 響應。結果顯示當添加 5wt%的二硫化鉬時,輸出電壓大大提高,大約是沒有二 硫化鉬填料的薄膜的 4.7 倍。總體結果表明,少層的二硫化鉬可藉由增加 β 相 和 γ 相晶體含量有效地誘導聚偏二氟乙烯的電活性相含量。此外,由添加二硫 化鉬誘導的電活性相的增加和電荷傳輸效率的提高造成的協同效應顯著地促進 了奈米發電機傳感器良好的壓電性能。


    Piezoelectric materials have recently been widely used in the electronic application field due to their ability to interconvert mechanical and electrical energy. Because of its excellent mechanical flexibility, lightweight, and low dielectric constant, piezoelectric polyvinylidene fluoride (PVDF) is a desirable backbone for flexible electronics. However, the original industrial PVDF lacks a polar electroactive (EA) phase, which restricts its potential for use in piezoelectric materials. Including nanofiller in the polymer matrix is an effective method to enhance the polar phases. Recently, two-dimensional (2D) transition metal dichalcogenides (TMDs) have aroused increasing interest in fabricating energy harvest materials because of their unique structure and electric properties. In this thesis, a few layers of two-dimensional molybdenum disulfide (MoS2) were obtained by liquid-phase exfoliation (LPE) from bulk MoS2 and introduced into the PVDF matrix to fabricate the MoS2/PVDF-based free-standing and piezoelectric flexible film by solvent casting.
    The exfoliated MoS2 (E-MoS2) nanosheets were proven by X-ray diffraction (XRD) and transmission electron microscopy (TEM) as a few layers, and ultraviolet- visible (UV-vis) was used to estimate the band gap energy of about 1.88 eV and its exfoliation. The effects of exfoliated MoS2 (E-MoS2) nanosheets on the PVDF’s piezoelectrical properties were evaluated by preparing the piezoelectric composite films with various concentrations of E-MoS2. The structure evolution concerning the filler content effect was investigated by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and X-ray diffraction (XRD). The EA phase content was improved to 77.9% when 5 wt% of E-MoS2 was added to the PVDF. The electrical properties of MoS2/PVDF composite films were analyzed by the LCR meter. The dielectric and electric modulus spectra demonstrate that the addition of E-MoS2 increases the mobility of charge carriers in MoS2/PVDF piezoelectric film. In addition, the MoS2/PVDF composite film was used to fabricate a piezoelectric nanogenerator (PENG) sensor device and evaluate the piezoelectric response by measuring the output voltage under the impact test method. The output voltage was greatly enhanced when 5 wt% of E-MoS2 was added and was about 4.7-fold higher than the film without the MoS2 filler. The overall results showed that the addition of E-MoS2 can effectively induce the EA phase fraction of PVDF by increasing β- and γ-phase crystalline content. Moreover, the synergetic effect caused by the increased EA phase and the improved charge transport ability significantly contributed to the good piezoelectric performance of the nanogenerator sensor.

    Acknowledgments III Table of Contents IV List of Figures VI List of Tables VIII Abstract IX Chapter 1. Introduction 1 1.1 Research Background 1 1.2 Piezoelectric Effect 1 1.3 Piezoelectric Materials 3 1.4 Enhancing the Electroactive (EA) Phases of PVDF 4 1.5 Research Motivation and Purpose 7 Chapter 2. Experimental Sections 8 2.1 Materials 8 2.2 Sample preparation 9 2.2.1 Liquid-Phase Exfoliation Process 9 2.2.2 Preparation of PVDF and MoS2/PVDF Piezoelectric Film 10 2.2.3 Preparation of Piezoelectric Nanogenerators (PENGs) 11 2.3 Characteristics 12 2.3.1 Characterization for E-MoS2 nanosheets 12 2.3.2 Chemical Characterization for Piezoelectric Films 13 2.3.3 Electric Properties of Piezoelectric Composite Films 17 2.3.4 Piezoelectric Response Measurement of PENG Sensor Device 20 Chapter 3. Results and Discussion 23 3.1 Exfoliated MoS2 Nanosheets 23 3.1.1 Exfoliated MoS2 by XRD Analysis 23 3.1.2 Exfoliated MoS2 by TEM Analysis 24 3.1.3 Exfoliated MoS2 by UV-vis Analysis 25 3.2 Piezoelectric Composite Films 27 3.2.1 ATR-FTIR Analysis of Piezoelectric Films 27 3.2.2 Raman Analysis of Piezoelectric Films 30 3.2.3 XRD Analysis of Piezoelectric Films 31 3.2.4 DSC Analysis of Piezoelectric Films 34 3.2.5 Complex Relative Permittivity Spectrum Analysis of Piezoelectric Films 36 3.2.6 Complex Electric Modulus Spectrum Analysis of Piezoelectric Films 38 3.3 Piezoelectric Response of Piezoelectric Sensor Device 40 Chapter 4. Conclusion 42 References 43

    1. Guo, Y., Zhang, X. S., Wang, Y., Gong, W., Zhang, Q., Wang, H., & Brugger, J. (2018). All-fiber hybrid piezoelectric-enhanced triboelectric nanogenerator for wearable gesture monitoring. Nano Energy, 48, 152-160.
    2. Maity, K., Mahanty, B., Sinha, T. K., Garain, S., Biswas, A., Ghosh, S. K., ... & Mandal, D. (2017). Two‐Dimensional piezoelectric MoS2‐modulated nanogenerator and nanosensor made of poly (vinlydine Fluoride) nanofiber webs for self‐powered electronics and robotics. Energy Technology, 5(2), 234-243.
    3. Vallem, V., Sargolzaeiaval, Y., Ozturk, M., Lai, Y. C., & Dickey, M. D. (2021). Energy harvesting and storage with soft and stretchable materials. Advanced Materials, 33(19), 2004832.
    4. Kalimuldina, G., Turdakyn, N., Abay, I., Medeubayev, A., Nurpeissova, A., Adair, D., & Bakenov, Z. (2020). A Review of Piezoelectric PVDF Film by Electrospinning and Its Applications. Sensors, 20(18), 5214.
    5. Bowen, C. R., Kim, H. A., Weaver, P. M., & Dunn, S. (2013). Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy & Environmental Science, 7(1), 25–44.
    6. Mishra, S., Unnikrishnan, L., Nayak, S. K., & Mohanty, S. (2019). Advances in Piezoelectric Polymer Composites for Energy Harvesting Applications: A Systematic Review. Macromolecular Materials and Engineering, 304(1), 1800463.
    7. Yadav, P., Raju, T. D., & Badhulika, S. (2020). Self-poled hBN-PVDF nanofiber mat-based low-cost, ultrahigh-performance piezoelectric nanogenerator for biomechanical energy harvesting. ACS Applied Electronic Materials, 2(7), 1970-1980.
    8. Ma, W., Yao, B., Zhang, W., He, Y., Yu, Y., & Niu, J. (2021). Fabrication of PVDF-based piezocatalytic active membrane with enhanced oxytetracycline degradation efficiency through embedding few-layer E-MoS2 nanosheets. Chemical Engineering Journal, 415, 129000.
    9. Ueberschlag, P. (2001). PVDF piezoelectric polymer. Sensor Review, 21(2), 118–126.
    10. Ruan, L., Yao, X., Chang, Y., Zhou, L., Qin, G., & Zhang, X. (2018). Properties and Applications of the β Phase Poly(vinylidene fluoride). Polymers, 10(3), 228.
    11. Salimi, A., & Yousefi, A. A. (2004). Conformational changes and phase transformation mechanisms in PVDF solution-cast films. Journal of Polymer Science Part B: Polymer Physics, 42(18), 3487–3495.
    12. Thakur, A., Mandeep, J., Dam, S., Shekar, N. V. C., Amarendra, G., Hussain, S., Rajesh, P. V., & Saha, A. (2021). Enhancing the electroactive phases in freestanding flexible films of MoS2/PVDF. Polymer Crystallization, 4(2).
    13. Cano-Sarmiento, C., Alamilla-Beltrán, L., Azuara-Nieto, E., Hernández-Sánchez, H., Téllez-Medina, D. I., Jiménez-Martínez, C., & Gutiérrez-López, G. F. (2015). Food Nanoscience and Nanotechnology. Food Engineering Series, 145–161.
    14. Li, Y., Yin, X., & Wu, W. (2018). Preparation of Few-Layer MoS2 Nanosheets via an Efficient Shearing Exfoliation Method. Industrial & Engineering Chemistry Research, 57(8), 2838–2846.
    15. Tauc, J., Grigorovici, R., & Vancu, A. (1966). Optical Properties and Electronic Structure of Amorphous Germanium. Physica Status Solidi (b), 15(2), 627–637.
    16. Makuła, P., Pacia, M., & Macyk, W. (2018). How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV–Vis Spectra. The Journal of Physical Chemistry Letters, 9(23), 6814–6817.
    17. Cai, X., Lei, T., Sun, D., & Lin, L. (2017). A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Advances, 7(25), 15382–15389.
    18. Tong, J., Huang, H.-X., & Wu, M. (2016). Facile green fabrication of well dispersed poly(vinylidene fluoride)/graphene oxide nanocomposites with improved properties. Composites Science and Technology, 129, 183–190.
    19. Li, W., Song, Z., Zhong, J., Qian, J., Tan, Z., Wu, X., Chu, H., Nie, W., & Ran, X. (2019). Multilayer-structured transparent MXene/PVDF film with excellent dielectric and energy storage performance. Journal of Materials Chemistry C, 7(33), 10371–10378.
    20. McCrum, N. G., Read, B. E., & Williams, G. (1967). Anelastic and dielectric effects in polymeric solids.
    21. Tian, F., & Ohki, Y. (2014). Electric modulus powerful tool for analyzing dielectric behavior. IEEE Transactions on Dielectrics and Electrical Insulation, 21(3), 929–931.
    22. Savjani, N., Lewis, E. A., Pattrick, R. A. D., Haigh, S. J., & O’Brien, P. (2014). MoS 2 nanosheet production by the direct exfoliation of molybdenite minerals from several type-localities. RSC Advances, 4(67), 35609–35613.
    23. Zhao, Z.-Y., & Liu, Q.-L. (2018). Study of the layer-dependent properties of MoS 2 nanosheets with different crystal structures by DFT calculations. Catalysis Science & Technology, 8(7), 1867–1879.
    24. Tashiro, K., Kobayashi, M., & Tadokoro, H. (1981). Vibrational spectra and disorder-order transition of poly (vinylidene fluoride) form III. Macromolecules, 14(6), 1757-1764.
    25. Bachmann, M. A., Gordon, W. L., Koenig, J. L., & Lando, J. B. (1979). An infrared study of phase‐III poly (vinylidene fluoride). Journal of Applied Physics, 50(10), 6106-6112.
    26. Bormashenko, Y., Pogreb, R., Stanevsky, O., & Bormashenko, E. (2004). Vibrational spectrum of PVDF and its interpretation. Polymer testing, 23(7), 791-796.
    27. Riosbaas, M. T., Loh, K. J., O’Bryan, G., & Loyola, B. R. (2014). In situ phase change characterization of PVDF thin films using Raman spectroscopy. Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2014, 90610Z-90610Z – 11.
    28. Silva, M. P., Sencadas, V., Botelho, G., Machado, A. V., Rolo, A. G., Rocha, J. G., & Lanceros-Mendez, S. (2010). α- and γ-PVDF: Crystallization kinetics, microstructural variations and thermal behaviour. Materials Chemistry and Physics, 122(1), 87–92.
    29. Martins, P., Lopes, A. C., & Lanceros-Mendez, S. (2014). Electroactive phases of poly (vinylidene fluoride): Determination, processing and applications. Progress in polymer science, 39(4), 683-706.
    30. El-Nahass, M. M., Attia, A. A., Ali, H. A. M., Salem, G. F., & Ismail, M. I. (2018). Nature of dielectric properties, electric modulus and AC electrical conductivity of nanocrystalline ZnIn2Se4 thin films. Journal of Electronic Materials, 47(5), 2739-2745.
    31. Mathew, T., Kunjomana, A. G., Munirathnam, K., Chandrasekharan, K. A., Meena, M., & Mahadevan, C. K. (2012). Mechanical and Dielectric Properties of InTe Crystals. Crystal Structure Theory and Applications, 1(03), 79.
    32. Khan, S. M., Sharmin, M., Khan, M. N. I., Hossain, A. K. M. A., & Rahaman, Md. D. (2019). Synthesis, structural, microstructural and electromagnetic properties of (1 − x) [Ni0.25Cu0.15Zn0.60Fe2O4] + (x) [Na1/3Ca1/3Bi1/3Cu3Ti4O12] composites. Journal of Materials Science: Materials in Electronics, 30(16), 15388–15412.
    33. Mokhtari, F., Shamshirsaz, M., Latifi, M., & Asadi, S. (2017). Comparative evaluation of piezoelectric response of electrospun PVDF (polyvinilydine fluoride) nanofiber with various additives for energy scavenging application. The Journal of The Textile Institute, 108(6), 906–914.
    34. Karan, S. K., Mandal, D., & Khatua, B. B. (2015). Self-powered flexible Fe-doped RGO/PVDF nanocomposite: an excellent material for a piezoelectric energy harvester. Nanoscale, 7(24), 10655–10666.

    無法下載圖示 全文公開日期 2025/02/07 (校內網路)
    全文公開日期 2025/02/07 (校外網路)
    全文公開日期 2025/02/07 (國家圖書館:臺灣博碩士論文系統)
    QR CODE