簡易檢索 / 詳目顯示

研究生: 尤浚達
Chun-Ta Yu
論文名稱: 添加生醫陶瓷於循環再生明膠對骨再生之研究
Study on bone regeneration by adding biomedical ceramics to circulating gelatin
指導教授: 王復民
Fu-Ming Wang
口試委員: 王復民
Fu-Ming Wang
王潔
Jane Wang
鄭逸琳
Yih-Lin Cheng
陳怡文
Yi-Wen Chen
陳潤明
Jun-Ming Chen
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 72
中文關鍵詞: 陶瓷再生明膠骨再生生物列印
外文關鍵詞: ceramic, circulating gelatin, bone regeneration, bioprinting
相關次數: 點閱:255下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 骨骼具有複雜的層次結構以及自我再生的能力,但在臨界尺寸缺陷的情況下,正常骨骼的再生能力會嚴重受損,導致骨骼的不癒合。以骨組織工程的概念能夠有機會解決臨界尺寸的骨缺損相關之挑戰。目前在市場上可獲得的許多生物材料中,矽酸鈣(Calcium silicate,CS)為基材陶瓷因其多功能性和良好的生物活性而被人們所關注。在最近的十年中,科學家們試圖對CS進行改性或添加更多功用,以增強CS的生物活性。例如添加某些金屬離子促進骨頭的生長。據報導,將介孔奈米粒子添加到支架上加載藥物也可以增強支架對於骨的再生能力。而另一方面,以生物支架包覆細胞的是一種有前景的新穎方法,有機會加速組織工程和再生醫學工程技術上的開發及創新以製造出功能化之器官。然而,傳統的3D支架和載有細胞的水膠的製備方法仍然面臨許多困難和挑戰。本研究使用了一種新的生物列印技術和大量未充分利用的海洋副產物的概念來開發用於骨組織工程的新型支架。在本研究的第一部分中,將魚類所提取的明膠與生物活性陶瓷相結合用於骨組織工程,成功地透過光交聯製備了新型甲基丙烯酰化明膠聚合物水膠支架(Fish gelatin methacrylate scaffold,FG),並且將其與摻有鍶的矽酸鈣(Strontium-doped calcium silicate,SrCS)混合列印之,製備含生物陶瓷之水膠支架(FGSr),後續將評估其機械性質、物化性分析、降解特性。此外也在列印過程中將幹細胞摻混入材料一同列印,再將列印後的支架經過體外培養,在不同時間點進行細胞生物相容性、Live/dead細胞染色、鹼性磷酸酶以及骨礦化分析。第二部分的主要目的是進一步以FG為列印基材,並將將骨形態發生蛋白-2(Bone morphogenic protein-2,BMP-2)搭載入摻有鍶的介孔洞矽酸鈣(meso SrCS)結合,期望能夠藉由介孔洞陶瓷粉末,來延長BMP-2釋放的時間,並且同樣使用光固化的列印過程將上述材料製備成三維多孔支架,後續將評估其組成分析、機械強度、以及BMP-2釋放效果。後續也將細胞與材料混合列印,並且測試細胞的生物相容性以及成骨分化相關的基因表現能力。我們也預期這樣的設計,對於骨組織再生的效果將能夠大幅提升,並且評估未來能在臨床上的使用可行性。


    Bone has a complex hierarchical structure with the capability of self-regeneration. In the case of critical-sized bone defects, the regeneration capabilities of normal bones are severely impaired, thus causing non-uniform healing of bones. Therefore, bone tissue engineering has since emerged to solve problems relating to critical-sized bone defects. Amongst the many biomaterials available on the market, calcium silicate-based (CS) cements have garnered huge interest due to their versatility and good bioactivity. In the recent decade, scientists have attempted to modify or functionalize CS cement in order to enhance the bioactivity of CS. Reports have also been made, so that the addition of mesoporous nanoparticles onto scaffolds could enhance the bone regenerative capabilities of scaffolds. On the other hand, cell-encapsulated bioscaffold is a promising and novel method to allow for the fabrication of live functional organs for tissue engineering and regenerative medicine. However, traditional fabrication methods of 3D scaffolds and cell-laden hydrogels still face many difficulties and challenges. This study uses 3D fabrication technique and the concept of recycling of an unutilized resource to fabricate a novel scaffold for bone tissue engineering. So, in the part I of this study, fish-extracted gelatin was incorporated with bioactive ceramic for bone tissue engineering, and with this, we successfully fabricated a novel fish gelatin methacrylate scaffold (FG). Besides, we further incorporated strontium Sr-doped calcium silicate powder (SrCS) into methacrylated gelatin for the preparation of ceramic-contained hydrogel 3D scaffold (FGSr) via photo-crosslinking. And the main object in part II was to reuse gelatin from fish wastes and use it to combine with bone morphogenetic protein (BMP)-2 and meso SrCS to create a novel BMP-2-loaded, hydrogel-based mesoporous SrCS scaffold (FGSrB) and to evaluate its composition, mechanical strength and biological functions.
    Keywords: 3D printing, Cell-laden scaffold, Calcium silicate, Strontium, BMP-2

    第一章、緒論 1 1.1 骨缺損的治療與挑戰 1 1.2 組織工程 2 1.3 生物陶瓷 4 1.4 離子效益 6 1.5 骨誘導因子 9 1.6 3D列印技術 10 1.7 生物列印 11 1.8 光固化材料之限制 13 1.9 光固化明膠 16 1.10 研究目的 17 第二章、材料與方法 19 2.1 生物列印魚明膠基材/含鍶矽酸鈣支架促進骨組織再生 19 2.1.1 支架製備 19 2.1.2 物理化學性質分析 20 2.1.3 體外浸泡實驗 21 2.1.4 細胞增生 21 2.1.5 鹼性磷酸酶活性 23 2.1.6 礦化分析 23 2.1.7 數據分析 23 2.2 以介孔鍶矽酸鈣載有生長因子之生物列印水膠支架評估 25 2.2.1 SrCS介孔洞奈米粒子合成 25 2.2.2 BMP-2裝載 25 2.2.3 FGSr及FGSrB支架製備 26 2.2.4 物理化學性質分析 26 2.2.5 BMP-2釋放 26 2.2.6 細胞增生 27 2.2.7 成骨相關蛋白化驗 27 2.2.8 礦化作用 28 2.2.9 數據分析 29 第三章、結果與討論 30 3.1 生物列印魚明膠基材/含鍶矽酸鈣支架促進骨組織再生 30 3.1.1 支架製備 30 3.1.2 支架成分分析 31 3.1.3 動態力學分析 34 3.1.4 機械性質 34 3.1.5 表面型態 35 3.1.6 重量損失 37 3.1.7 離子釋放 38 3.1.8 細胞增生 40 3.1.9 骨質新生 43 3.2 以介孔鍶矽酸鈣載有生長因子之生物列印水膠支架評估 46 3.2.1 支架製備 46 3.2.2 晶相分析 47 3.2.3 機械性質 48 3.2.4 支架表面型態 49 3.2.5 BMP-2釋放數據 50 3.2.6 細胞增生 52 3.2.7 成骨作用 54 3.2.8 鈣沉積 56 第四章、結論 58 參考文獻 59

    [1] B.G. Yun, S.H. Lee, J.H. Jeon, S.W. Kim, C.K. Jung, G. Park, et al., Accelerated bone regeneration via three-dimensional cell-printed constructs containing human nasal turbinate-derived stem cells as a clinically applicable therapy, ACS Biomater Sci Eng. 5 (2019) 6171–6185.
    [2] H. Takayanagi, Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems, Nat Rev Immunol. 7 (2007) 292–304.
    [3] A. Cianciosi, M. Costantini, S. Bergamasco, S. Testa, E. Fornetti, J. Jaroszewicz, et al., Engineering human-scale artificial bone grafts for treating critical-size bone defects, ACS Appl Bio Mater. 2 (2019) 5077–5092.
    [4] J.J. Li, C.R. Dunstan, A. Entezari, Q. Li, R. Steck, S. Saifzadeh, et al., A novel bone substitute with high bioactivity, strength, and porosity for repairing large and load-bearing bone defects, Adv Healthc Mater. 8 (2019) 1801298. doi:10.1002/adhm.201801298.
    [5] W.C. Wang, K.C. Nune, L. Tan, N. Zhang, J. Dong, J. Yan, et al., Bone regeneration of hollow tubular magnesium‑strontium scaffolds in critical-size segmental defects: Effect of surface coatings, Mater Sci Eng C Mater Biol Appl. 100 (2019) 297–307.
    [6] R.X. Wu, X.T. He, J.H. Zhu, Y. Yin, X. Li, X. Liu, et al., Modulating macrophage responses to promote tissue regeneration by changing the formulation of bone extracellular matrix from filler particles to gel bioscaffolds, Mater Sci Eng C Mater Biol Appl. 101 (2019) 330–340. doi:10.1016/j.msec.2019.03.107.
    [7] Z. Zhou, E. Cunningham, A. Lennon, H.O. McCarthy, F. Buchanan, N. Dunne, Development of three-dimensional printing polymer-ceramic scaffolds with enhanced compressive properties and tuneable resorption, Mater Sci Eng C Mater Biol Appl. 93 (2018) 975–986.
    [8] N. Matsuda, T. Shimizu, M. Yamato, T. Okano, Tissue engineering based on cell sheet technology, Adv Mater. 19 (2007) 3089–3099.
    [9] S. Pouraghaei, F. Moztarzadeh, C. Chen, S. Ansari, A. Moshaverinia, Microenvironment can induce development of auditory progenitor cells from human gingival mesenchymal stem cells, ACS Biomater Sci Eng. 6 (2020) 2263–2273.
    [10] Y. Du, J.L. Guo, J. Wang, A.G. Mikos, S. Zhang, Hierarchically designed bone scaffolds: From internal cues to external stimuli, Biomaterials. 218 (2019) 119334.
    [11] F. Baino, C. Vitale-Brovarone, Bioceramics in ophthalmology, Acta Biomater. 10 (2014) 3372–3397.
    [12] L.L. Hench, Bioceramics: from concept to clinic, J Am Ceram Soc. 74 (1991) 1457–1510.
    [13] S. Yao, Y. Xu, Y. Zhou, C. Shao, Z. Liu, B. Jin, et al., Calcium phosphate nanocluster-loaded injectable hydrogel for bone regeneration, ACS Appl Bio Mater. 2 (2019) 4408–4417.
    [14] T.F. Kuo, S.Y. Lee, H.D. Wu, M. Poma, Y.W. Wu, J.C. Yang, An in vivo swine study for xeno-grafts of calcium sulfate-based bone grafts with human dental pulp stem cells (hDPSCs), Mater Sci Eng C Mater Biol Appl. 50 (2015) 19–23.
    [15] J. Zhang, W. Liu, V. Schnitzler, F. Tancret, J.M. Bouler, Calcium phosphate cements for bone substitution: Chemistry, handling and mechanical properties, Acta Biomater. 10 (2014) 1035–1049.
    [16] S. Pri-Chen, S. Pitaru, F. Lokiec, N. Savion, Basic fibroblast growth factor enhances the growth and expression of the osteogenic phenotype of dexamethasone-treated human bone marrow-derived bone-like cells in culture, Bone. 23 (1998) 111–117.
    [17] L.N. Luong, J. Ramaswamy, D.H. Kohn, Effects of osteogenic growth factors on bone marrow stromal cell differentiation in a mineral-based delivery system, Biomaterials. 33 (2012) 283–294.
    [18] O. Kossover, N. Cohen, J.A. Lewis, Y. Berkovitch, E. Peled, D. Seliktar, Growth factor delivery for the repair of a critical size tibia defect using an acellular, biodegradable polyethylene glycol–albumin hydrogel implant, ACS Biomater Sci Eng. 6 (2019) 100–111.
    [19] Y.W. Chen, C.H. Yeh, M.Y. Shie, Stimulatory effects of the fast setting and degradable Ca–Si–Mg cement on both cementogenesis and angiogenesis differentiation of human periodontal ligament cells, J Mater Chem B. 3 (2015) 7099–7108.
    [20] W.C. Liu, H.Y. Wang, L.C. Chen, S.W. Huang, C. Wu, R.J. Chung, Hydroxyapatite/tricalcium silicate composites cement derived from novel two-step sol-gel process with good biocompatibility and applications as bone cement and potential coating materials, Ceram Int. 45 (2019) 5668–5679.
    [21] Y.C. Chiu, M.Y. Shie, Y.H. Lin, K.X. Lee, Y.W. Chen, Effect of strontium substitution on the physicochemical properties and bone regeneration potential of 3D printed calcium silicate scaffolds, Int J Mol Sci. 20 (2019) 2729.
    [22] M.Y. Shie, S.J. Ding, H.C. Chang, The role of silicon in osteoblast-like cell proliferation and apoptosis, Acta Biomater. 7 (2011) 2604–2614.
    [23] M. Vallet-Regí, E. Ruiz-Hernández, Bioceramics: from bone regeneration to cancer nanomedicine, Adv Mater. 23 (2011) 5177–5218.
    [24] M.P. Staiger, A.M. Pietak, J. Huadmai, G. Dias, Magnesium and its alloys as orthopedic biomaterials: A review, Biomaterials. 27 (2006) 1728–1734.
    [25] B. Pemmer, A. Roschger, A. Wastl, J.G. Hofstaetter, P. Wobrauschek, R. Simon, et al., Spatial distribution of the trace elements zinc, strontium and lead in human bone tissue, Bone. 57 (2013) 184–193.
    [26] Y.J. No, J.J. Li, H. Zreiqat, Doped calcium silicate ceramics: A new class of candidates for synthetic bone substitutes, Materials. 10 (2017) 153.
    [27] S.G. Dahl, P. Allain, P.J. Marie, Y. Mauras, G. Boivin, P. Ammann, et al., Incorporation and distribution of strontium in bone, Bone. 28 (2001) 446–453.
    [28] S.C. Verberckmoes, M.E. De Broe, P.C. D'Haese, Dose-dependent effects of strontium on osteoblast function and mineralization, Kidney International. 64 (2003) 534–543.
    [29] D. Ke, S. Tarafder, S. Vahabzadeh, S. Bose, Effects of MgO, ZnO, SrO, and SiO2 in tricalcium phosphate scaffolds on in vitro gene expression and in vivo osteogenesis, Mater Sci Eng C Mater Biol Appl. 96 (2019) 10–19.
    [30] T.H. Huang, C.T. Kao, Y.F. Shen, Y.T. Lin, Y.T. Liu, S.Y. Yen, et al., Substitutions of strontium in bioactive calcium silicate bone cements stimulate osteogenic differentiation in human mesenchymal stem cells, J Mater Sci: Mater Med. 30 (2019) 68.
    [31] C.T. Kao, T.H. Huang, Y.J. Chen, C.J. Hung, C.C. Lin, M.Y. Shie, Using calcium silicate to regulate the physicochemical and biological properties when using β-tricalcium phosphate as bone cement, Mater Sci Eng C Mater Biol Appl. 43 (2014) 126–134.
    [32] M. Pilmane, K. Salma-Ancane, D. Loca, J. Locs, L. Berzina-Cimdina, Strontium and strontium ranelate: Historical review of some of their functions, Mater Sci Eng C Mater Biol Appl. 78 (2017) 1222–1230.
    [33] M.K. Hsieh, C.J. Wu, C.C. Chen, T.T. Tsai, C.C. Niu, S.C. Wu, et al., BMP-2 gene transfection of bone marrow stromal cells to induce osteoblastic differentiation in a rat calvarial defect model, Mater Sci Eng C Mater Biol Appl. 91 (2018) 806–816.
    [34] M. Yamaguchi, N. Aihara, T. Kojima, K. Kasai, RANKL increase in compressed periodontal ligament cells from root resorption, J Dent Res. 85 (2006) 751–756.
    [35] J.B. Lian, G.S. Stein, A.J. Van Wijnen, J.L. Stein, M.Q. Hassan, T. Gaur, et al., MicroRNA control of bone formation and homeostasis, Nat Rev Endocrinol. 8 (2012) 212–227.
    [36] B.O. Williams, K.L. Insogna, Where Wnts went: the exploding field of Lrp5 and Lrp6 signaling in bone, J Bone Miner Res. 24 (2009) 171–178.
    [37] M.C. Horowitz, Y. Xi, K. Wilson, M.A. Kacena, Control of osteoclastogenesis and bone resorption by members of the TNF family of receptors and ligands, Cytokine Growth Factor Rev. 12 (2001) 9–18.
    [38] Y.H. Lin, T.Y. Chuang, W.H. Chiang, I.W.P. Chen, K. Wang, M.Y. Shie, et al., The synergistic effects of graphene-contained 3D-printed calcium silicate/poly-ε-caprolactone scaffolds promote FGFR-induced osteogenic/angiogenic differentiation of mesenchymal stem cells, Mater Sci Eng C Mater Biol Appl. 104 (2019) 109887.
    [39] K.H. Huang, Y.H. Lin, M.Y. Shie, C.P. Lin, Effects of bone morphogenic protein-2 loaded on the 3D-printed MesoCS scaffolds, J Formos Med Assoc. 117 (2018) 879–887.
    [40] C.C. Chen, H.Y. Ng, C.W. Lou, Y.S. Chen, C.H. Chen, M.Y. Shie, Additive manufacturing of nerve decellularized extracellular matrix-contained polyurethane conduits for peripheral nerve regeneration, Polymers. 11 (2019) 1612.
    [41] K.H. Huang, Y.W. Chen, C.Y. Wang, Y.H. Lin, Y.H. Wu, M.Y. Shie, et al., Enhanced capability of BMP-2-loaded mesoporous calcium silicate scaffolds to induce odontogenic differentiation of human dental pulp cells, J Endod. 44 (2018) 1677–1685.
    [42] C.Y. Huang, T.H. Huang, C.T. Kao, Y.H. Wu, W.C. Chen, M.Y. Shie, Mesoporous calcium silicate nanoparticles with drug delivery and odontogenesis properties, J Endod. 43 (2017) 69–76.
    [43] Y.W. Chen, Y.F. Shen, C.C. Ho, J. Yu, Y.H. Wu, K. Wang, et al., Osteogenic and angiogenic potentials of the cell-laden hydrogel/mussel-inspired calcium silicate complex hierarchical porous scaffold fabricated by 3D bioprinting, Mater Sci Eng C Mater Biol Appl. 91 (2018) 679–687.
    [44] N. Xu, X. Ye, D. Wei, J. Zhong, Y. Chen, G. Xu, et al., 3D artificial bones for bone repair prepared by computed tomography-guided fused deposition modeling for bone repair, ACS Appl Mater Interfaces. 6 (2014) 14952–14963.
    [45] S.H. Hsu, H.J. Yen, C.S. Tseng, C.S. Cheng, C.L. Tsai, Evaluation of the growth of chondrocytes and osteoblasts seeded into precision scaffolds fabricated by fused deposition manufacturing, J Biomed Mater Res Part A. 80 (2007) 519–527.
    [46] K.E.G. Dienel, B. van Bochove, J.V. Seppälä, Additive manufacturing of bioactive poly(trimethylene carbonate)/β-tricalcium phosphate composites for bone regeneration, Biomacromolecules. 21 (2020) 366–375.
    [47] D. Xue, J. Zhang, Y. Wang, D. Mei, Digital light processing-based 3D printing of cell-seeding hydrogel scaffolds with regionally varied stiffness, ACS Biomater Sci Eng. 5 (2019) 4825–4833.
    [48] H. Hong, Y.B. Seo, D.Y. Kim, J.S. Lee, Y.J. Lee, H. Lee, et al., Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering, Biomaterials. 232 (2020) 119679.
    [49] D.A. Moin, B. Hassan, D. Wismeijer, A novel approach for custom three‐dimensional printing of a zirconia root analogue implant by digital light processing, Clin Oral Implants Res. 28 (2017) 668–670.
    [50] S.H. Kim, Y.K. Yeon, J.M. Lee, J.R. Chao, Y.J. Lee, Y.B. Seo, et al., Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing, Nat Commun. 9 (2018) 921.
    [51] X. Kuang, J. Wu, K. Chen, Z. Zhao, Z. Ding, F. Hu, et al., Grayscale digital light processing 3D printing for highly functionally graded materials, Sci Adv. 5 (2019) eaav5790.
    [52] Q. Mao, Y. Wang, Y. Li, S. Juengpanich, W. Li, M. Chen, et al., Fabrication of liver microtissue with liver decellularized extracellular matrix (dECM) bioink by digital light processing (DLP) bioprinting, Mater Sci Eng C Mater Biol Appl. 109 (2020) 110625.
    [53] F.L.C. Morgan, L. Moroni, M.B. Baker, Dynamic bioinks to advance bioprinting, Adv Healthc Mater. 8 (2020) e1901798.
    [54] K.S. Lim, J.H. Galarraga, X. Cui, G.C.J. Lindberg, J.A. Burdick, T.B.F. Woodfield, Fundamentals and applications of photo-cross-linking in bioprinting, Chem Rev. (2020).
    [55] P.S. Gungor-Ozkerim, I. Inci, Y.S. Zhang, A. Khademhosseini, M.R. Dokmeci, Bioinks for 3D bioprinting: an overview, Biomater Sci. 6 (2018) 915–946.
    [56] X. Du, S. Fu, Y. Zhu, 3D printing of ceramic-based scaffolds for bone tissue engineering: an overview, J Mater Chem B. 6 (2018) 4397–4412.
    [57] K. de la Caba, P. Guerrero, T.S. Trung, M. Cruz-Romero, J.P. Kerry, J. Fluhr, et al., From seafood waste to active seafood packaging: An emerging opportunity of the circular economy, J Clean Prod. 208 (2019) 86–98.
    [58] P.K. Dutta, M.N.V. Ravikumar, J. Dutta, Chitin and chitosan for versatile applications, J Macromol Sci Polym Rev. 42 (2007) 307–354.
    [59] S.H. Lim, S.M. Hudson, Review of chitosan and its derivatives as antimicrobial agents and their uses as textile chemicals, J Macromol Sci Polym Rev. 43 (2007) 223–269.
    [60] H.K. No, S.P. Meyers, W. Prinyawiwatkul, Z. Xu, Applications of chitosan for improvement of quality and shelf life of foods: A review, J Food Sci. 72 (2007) R87–R100.
    [61] S. Li, K. Wang, X. Jiang, Q. Hu, C. Zhang, Ben Wang, Rapid fabrication of ready-to-use gelatin scaffolds with prevascular networks using alginate hollow fibers as sacrificial templates, ACS Biomater Sci Eng. 6 (2020) 2297–2311.
    [62] B.J. Klotz, D. Gawlitta, A.J.W.P. Rosenberg, J. Malda, F.P.W. Melchels, Gelatin-methacryloyl hydrogels: Towards biofabrication-based tissue repair, Trends Biotech. 34 (2016) 394–407.
    [63] W. Xiao, J. Li, X. Qu, L. Wang, Y. Tan, K. Li, et al., Cell-laden interpenetrating network hydrogels formed from methacrylated gelatin and silk fibroin via a combination of sonication and photocrosslinking approaches, Mater Sci Eng C Mater Biol Appl. 99 (2019) 57–67.
    [64] M.Y. Shie, Y.F. Shen, S.D. Astuti, K.X. Lee, S.H. Lin, N.L.B. Dwijaksara, et al., Review of polymeric materials in 4D printing biomedical applications, Polymers. 11 (2019) 1864.
    [65] C.T. Yu, F.M. Wang, Y.T. Liu, K.-X.A. Lee, T.L. Lin, Y.W. Chen, Enhanced proliferation and differentiation of human mesenchymal stem cell-laden recycled fish gelatin/strontium substitution calcium silicate 3D scaffolds, Appl Sci. 10 (2020) 2168.
    [66] Y. Dong, H. Chen, P. Qiao, Z. Liu, Development and properties of fish gelatin/oxidized starch double network film catalyzed by thermal treatment and schiff' base reaction, Polymers. 11 (2019) 2065. doi:10.3390/polym11122065.
    [67] N. Mandakhbayar, A. El-Fiqi, J.H. Lee, H.W. Kim, Evaluation of strontium-doped nanobioactive glass cement for dentin–pulp complex regeneration therapy, ACS Biomater Sci Eng. 5 (2019) 6117–6126.
    [68] W.H. Lin, J. Yu, G. Chen, W.B. Tsai, Fabrication of multi-biofunctional gelatin-based electrospun fibrous scaffolds for enhancement of osteogenesis of mesenchymal stem cells, Colloids Surf B. 138 (2016) 26–31. doi:10.1016/j.colsurfb.2015.11.017.
    [69] J.L. Wang, Q. Chen, B.B. Du, L. Cao, H. Lin, Z.Y. Fan, et al., Enhanced bone regeneration composite scaffolds of PLLA/β-TCP matrix grafted with gelatin and HAp, Mater Sci Eng C Mater Biol Appl. 87 (2018) 60–69.
    [70] S.F. Hosseini, Z. Javidi, M. Rezaei, Efficient gas barrier properties of multi-layer films based on poly(lactic acid) and fish gelatin, Int J Biol Macromol. 92 (2016) 1205–1214.
    [71] T. Qu, X. Liu, Nano-structured gelatin/bioactive glass hybrid scaffolds for the enhancement of odontogenic differentiation of human dental pulp stem cells, J Mater Chem B. 1 (2013) 4764–4772.
    [72] H.M. Etmimi, R.D. Sanderson, New approach to the synthesis of exfoliated polymer/graphite nanocomposites by miniemulsion polymerization using functionalized graphene, Macromolecules. 44 (2011) 8504–8515.
    [73] D. Zhao, J. Huang, Y. Zhong, K. Li, L. Zhang, J. Cai, High-strength and high-toughness double-cross-linked cellulose hydrogels: A new strategy using sequential chemical and physical cross-linking, Adv Funct Mater. 26 (2016) 6279–6287.
    [74] M. Rizwan, G.S.L. Peh, H.-P. Ang, N.C. Lwin, K. Adnan, J.S. Mehta, et al., Sequentially-crosslinked bioactive hydrogels as nano-patterned substrates with customizable stiffness and degradation for corneal tissue engineering applications, Biomaterials. 120 (2017) 139–154. doi:10.1016/j.biomaterials.2016.12.026.
    [75] P.A. Kokkinos, P.G. Koutsoukos, D.D. Deligianni, Detachment strength of human osteoblasts cultured on hydroxyapatite with various surface roughness. Contribution of integrin subunits, J Mater Sci: Mater Med. 23 (2012) 1489–1498.
    [76] H.J. Yoon, S.R. Shin, J.M. Cha, S.H. Lee, J.H. Kim, J.T. Do, et al., Cold water fish gelatin methacryloyl hydrogel for tissue engineering application, PloS ONE. 11 (2016) 0163902.
    [77] C. Wang, H. Shen, Y. Tian, Y. Xie, A. Li, L. Ji, et al., Bioactive nanoparticle-gelatin composite scaffold with mechanical performance comparable to cancellous bones, ACS Appl Mater Interfaces. 6 (2014) 13061–13068.
    [78] D. Zhai, M. Xu, L. Liu, J. Chang, C. Wu, Silicate-based bioceramics regulating osteoblast differentiation through a BMP2 signalling pathway, J Mater Chem B. 5 (2017) 7297–7306.
    [79] S.I. Roohani-Esfahani, K.Y. Wong, Z. Lu, Y. Juan Chen, J.J. Li, S. Gronthos, et al., Fabrication of a novel triphasic and bioactive ceramic and evaluation of its in vitro and in vivo cytocompatibility and osteogenesis, J Mater Chem B. 2 (2014) 1866–1878.
    [80] F. Yang, D. Yang, J. Tu, Q. Zheng, L. Cai, L. Wang, Strontium enhances osteogenic differentiation of mesenchymal stem cells and in vivo bone formation by activating Wnt/catenin signaling, Stem Cells. 29 (2011) 981–991.
    [81] Y. Lei, Z. Xu, Q. Ke, W. Yin, Y. Chen, C. Zhang, et al., Strontium hydroxyapatite/chitosan nanohybrid scaffolds with enhanced osteoinductivity for bone tissue engineering, Mater Sci Eng C Mater Biol Appl. 72 (2017) 134–142.
    [82] M. Shaltooki, G. Dini, M. Mehdikhani, Fabrication of chitosan-coated porous polycaprolactone/strontium-substituted bioactive glass nanocomposite scaffold for bone tissue engineering, Mater Sci Eng C Mater Biol Appl. 105 (2019) 110138.
    [83] M. Kazemi, M.M. Dehghan, M. Azami, Biological evaluation of porous nanocomposite scaffolds based on strontium substituted β-TCP and bioactive glass: An in vitro and in vivo study, Mater Sci Eng C Mater Biol Appl. 105 (2019) 110071.
    [84] H. Xie, Z. Gu, Y. He, J. Xu, C. Xu, L. Li, et al., Microenvironment construction of strontium–calcium-based biomaterials for bone tissue regeneration: the equilibrium effect of calcium to strontium, J Mater Chem B. 6 (2018) 2332–2339.
    [85] D. Zheng, H. Yang, F. Yu, B. Zhang, H. Cui, Effect of graphene oxide on the crystallization of calcium carbonate by C3S carbonation, Materials. 12 (2019) 2045.
    [86] T.R. Su, T.H. Huang, C.T. Kao, H.Y. Ng, Y.C. Chiu, T.T. Hsu, The calcium channel affect osteogenic differentiation of mesenchymal stem cells on strontium-substituted Calcium silicate/poly-ε-caprolactone scaffold, Processes. 8 (2020) 198.
    [87] Y.L. Cheng, Y.W. Chen, K. Wang, M.Y. Shie, Enhanced adhesion and differentiation of human mesenchymal stem cell inside apatite-mineralized/poly(dopamine)-coated poly(ε-caprolactone) scaffolds by stereolithography, J Mater Chem B. 4 (2016) 6307–6315.
    [88] C.A. Tannoury, H.S. An, Complications with the use of bone morphogenetic protein 2 (BMP-2) in spine surgery, Spine J. 14 (2014) 552–559.
    [89] J. Tan, M. Zhang, Z. Hai, C. Wu, J. Lin, W. Kuang, et al., Sustained release of two bioactive factors from supramolecular hydrogel promotes periodontal bone regeneration, ACS Nano. 13 (2019) 5616–5622.
    [90] Y. Sun, X. Han, X. Wang, B. Zhu, B. Li, Z. Chen, et al., Sustained release of IGF-1 by 3D mesoporous scaffolds promoting cardiac stem cell migration and proliferation, Cell Physiol Biochem. 49 (2018) 2358–2370.
    [91] J. Wang, D. Li, T. Li, J. Ding, J. Liu, B. Li, et al., Gelatin tight-coated poly(lactide-co-glycolide) scaffold incorporating rhBMP-2 for bone tissue engineering, Materials. 8 (2015) 1009–1026.
    [92] P.T. Sudheesh Kumar, S. Hashimi, S. Saifzadeh, S. Ivanovski, C. Vaquette, Additively manufactured biphasic construct loaded with BMP-2 for vertical bone regeneration: A pilot study in rabbit, Mater Sci Eng C Mater Biol Appl. 92 (2018) 554–564.
    [93] C. Wu, Y.Z. Zhou, C. Lin, J. Chang, Y. Xiao, Strontium-containing mesoporous bioactive glass scaffolds with improved osteogenic/cementogenic differentiation of periodontal ligament cells for periodontal tissue engineering, Acta Biomater. 8 (2012) 3805–3815.
    [94] S. Yan, L. Feng, Q. Zhu, W. Yang, Y. Lan, D. Li, et al., Controlled release of BMP-2 from a heparin-conjugated strontium-substituted nanohydroxyapatite/silk fibroin scaffold for bone regeneration, ACS Biomater Sci Eng. 4 (2018) 3291–3303.
    [95] X. Zhao, Y. Han, J. Li, B. Cai, H. Gao, W. Feng, et al., BMP-2 immobilized PLGA/hydroxyapatite fibrous scaffold via polydopamine stimulates osteoblast growth, Mater Sci Eng C Mater Biol Appl. 78 (2017) 658–666.
    [96] S. Kuttappan, J.-I. Jo, C.K. Sabu, D. Menon, Y. Tabata, M.B. Nair, Bioinspired nanocomposite fibrous scaffold mediated delivery of ONO-1301 and BMP2 enhance bone regeneration in critical sized defect, Mater Sci Eng C Mater Biol Appl. 110 (2020) 110591.

    QR CODE