簡易檢索 / 詳目顯示

研究生: 簡辰學
Chen-Xue Jian
論文名稱: 具缺陷單晶矽材料之三維準穩態分子靜力學切削模式模擬奈米級正交切削
Simulation of nano-scale orthogonal cutting for monocrystalline silicon with point defect by using three dimensional quasi-steady molecular statics cutting model
指導教授: 林榮慶
Zone-ching Lin
口試委員: 傅光華
GUANG-HUA FU
許覺良
JYUE-LIANG SYU
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 120
中文關鍵詞: 分子靜力學
外文關鍵詞: molecular statics
相關次數: 點閱:162下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文使用準穩態分子靜力學方法針對具有缺陷存在的矽工件進行奈米級正交切削模擬,分析其切削力、切屑形狀、等效應力及等效應變的模擬結果。單晶矽在長晶時內部仍會產生許多點缺陷,經過熱能效應產生聚結擴散可能形成微缺陷,這些點缺陷因聚集的方式及形狀不同而有不同名稱,故本文將一個、兩個孔洞及成排空位原子設定在單晶矽材料當中,以具有後斜角15度及間隙角10度的單晶鑽石刀具對工件進行切削模擬,並與無缺陷結晶的材料作出分析比較。
本文所使用的三維準穩態奈米靜力學奈米切削模式,所撰寫的切削主程式使用編碼的方式,不只可對無缺陷晶格的工件作出模擬,亦能處理內部產生缺陷的工件切削,即使是出現不同位置缺陷時,也可依編號的方式,一一對各種不同邊界條件的參數來進行切削探討。當刀具與工件做動時,因為彼此間勢能的影響造成原子的位移,計算每個原子的運動軌跡直接求解每個原子移動一小段距離後,應用力平衡之概念,並以最佳化的方法來求解力平衡方程式求出新的運動位置,推算出切削時切屑的形成。在等效應力及等效應變方面,利用有限元素法中的形狀函數概念求出矽工件中間斷面之等效應變,再由塑流應力-應變曲線(flow stress-strain)的關係式得到等效應力的數值,進而得到被切削矽工間斷面的等效應變與等效應力的分佈趨勢。


This paper uses quasi-steady molecular statics method to carry out simulation of nanoscale orthogonal cutting of silicon workpiece with defects existed, and analyzes the simulation results of its cutting force, chip shape, equivalent stress and equivalent strain. During crystal growth period, single-crystal silicon still has many point defects caused inside. The agglomeration and diffusion caused after thermal energy effect may form micro defects. Due to different ways and different shapes of agglomeration, these point defects have different names. Therefore, this paper puts one hole, two holes and a row of empty atoms in a single-crystal material, and uses a single-crystal diamond cutting tool with rake angle 15° and clearance angle 10° to carry out simulated cutting of workpiece. After that, the paper analyzes and compares this simulated cutting with that of perfect crystal material.
For the three-dimensional quasi-steady molecular statics nanocutting model used by this paper, the main cutting formula written uses the way of coding. It not only can simulate the workpiece with defect-free lattice, but also can perform cutting of workpiece with defects produced inside. Even though defects appear at different positions, cutting can be explored towards the parameters of different boundary conditions according to the coding way. When cutting tool starts to have action with the workpiece, displacement of atoms is caused by the potential energy of each other. After the motion trajectory of each atom is calculated to directly find the movement of each atom for a small distance, the concept of force balance and optimization method are applied to acquire a force balance equation so as to find the new motion position. It is inferred that chips are formed during cutting. As to equivalent stress and equivalent strain, the concept of shape function in finite element method is adopted to obtain the equivalent strain on the middle section of silicon workpiece. From the flow stress-strain relational equation, the numerical value of equivalent stress can be obtained. Furthermore, the distribution trend of equivalent strain and equivalent stress on the middle section of the silicon workpiece being cut can be acquired.

目錄 摘要 I ABSTRACT III 誌謝 V 目錄 VI 圖目錄 IX 表目錄 X 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 奈米級切削及應力應變的文獻 2 1.2.2 分子力學之文獻 5 1.2.3 矽晶中的生長缺陷 7 1.3研究動機及目的 12 1.4本文架構 14 第二章 分子力學的原理與計算 17 2.1分子靜力學之基本原理 17 2.2分子作用力及勢能函數 18 2.3 截斷半徑法 20 2.4物理參數與無因次化 21 2.5虎克 吉夫斯(HOOKE-JEEVES)搜尋法 21 2.6切削力的求解方法 23 2.7平衡方程式的解 26 2.8程式模擬步驟: 30 第三章 奈米級應力與應變的計算 36 3.1 有限元素法 36 3.2 等效應變之計算 36 3.3 等效應力之計算 39 第四章 模擬參數設定 41 4.1 物理模型的建構 41 4.1.1矽材料缺陷的探討 41 4.1.2 邊界條件與模擬條件的設定 45 4.1.3 圓角刀具對不同工件切削條件設定 52 第五章 結果與討論 53 5.1 模擬無缺陷矽單晶材料切削之驗證與探討 53 5.1.1 模擬之驗證 53 5.1.2 以尖銳鑽石刀具切削無缺陷結晶材料 54 5.2 尖銳刀具對具有空孔缺陷之矽單晶材料切削探討 66 5.2.1尖銳刀具對空孔缺陷材料切削行為分析 66 5.2.2 尖銳刀具對空孔工件切削力的分析 66 5.2.3尖銳刀具對空孔工件切削狀態的應變與應力數值之分析 67 5.3 尖銳刀具對具有成排空位缺陷之矽單晶材料切削探討 77 5.3.1 尖銳刀具對成排空位缺陷工件的切削行為分析 77 5.3.2 具成排空位缺陷工件的切削力的分析 77 5.3.3 尖銳刀具對成排空位缺陷工件的應力與應變的分析 78 5.4 圓角刀具對具有空孔及成排空位缺陷之矽單晶材料切削探討 87 5.4.1 圓角刀具的切削行為分析 87 5.4.2 圓角刀具對工件切削力的分析 88 5.4.3 圓角刀具對工件所造成的應力應變分析 89 第六章 結論與建議 110 6.1結論 110 6.2 建議 112 參考文獻 113

參考文獻
[1]. Shimada, S., “Molecular Dynamics Analysis as Compared with Experimental Results of Micromachining,” Ann. CIRP, Vol.41, No. 1, pp.117-120(1990).
[2]. Childs, T. H. C., and Maewaka, K., “Computer-aided Simulation and Experimental Studies of Chip Flow and Tool Wear in the Turning of Flow Alloy Steels by Cemented Carbide Tools” ,Wear, Vol. 139, No.2, pp. 235-250(1990).
[3]. Belak, J., and Stowers, I. F., “A Molecular Dynamics Model of the Orthogonal Cutting Process,” Proc. Am. Soc., Precision Eng., pp.76-79(1990).
[4]. Kim, Jeong-Du., and Moon, Chan-Hong., “A study on microcutting for the configuration of tools using molecular dynamics” ,Journal of Materials Processing Technology , pp. 309-314(1995).
[5]. Fang, F. Z., Wu, H., Zhou, W., and Hu, X. T., “A study on mechanism of nano-cutting single crystal silicon” , Journal of Materials Processing Technology, pp. 407-410(2007).
[6]. Pei, Q. X., Lu,C., Fang, F. Z., and Wu, H., “Nanometric cutting of copper: A molecular dynamics study,” Computational Materials Science, pp.434-441(2006).
[7]. Inamura, T., and Takezawa, N., “Cutting Experiments in a Computer Using Atomic Models of a Copper Crystal and a Diamond Tool,” Int. J. Japan Soc. Prec. Eng., Vol. 25, No. 4, pp. 259-266(1991).
[8]. Inamura, T., and Takezawa, N., “Atomic-Scale Cutting in a Computer Using Crystal Models of Copper and Diamond,” Annals of the CIRP, Vol. 41, No. 1, pp. 121-124(1992).
[9]. Inamura, T., Takezawa, N., and, Kumaki, Y., “Mechanics and energy dissipation in nanoscale cutting”, Annals. CIRP, Vol.42, No.1, pp.79-82(1993).
[10]. Cai, M. B., Li*, X. P., Rahman,M., “ Study of the mechanism of nanoscale ductile mode cutting of silicon using molecular dynamics simulation” ,International Journal of Machine Tool & Manufacture pp.75-80(2007).
[11]. Cai, M. B., Li*, X. P., Rahman,M., “ Characteristics of “dynamic hard particles” in nanoscale ductile mode cutting of monocrystalline silicon with diamond tools in relation to tool groove wear” , wear ,pp.1459-1466(2007).
[12]. Cai, M. B., Li*, X. P., Rahman,M., “ Study of the temperature and stress in nanoscale ductile mode cutting of silicon using molecular dynamics simulation”, Journal of Materials Processing Technology,pp.607-612(2007).
[13]. Tanaka1, H., Shimada, S., “ Requirements for Ductile-mode Machining Based on Deformation Analysis of Mono-crystalline Silicon by Molecular Dynamics Simulation”,Annals of the CIRP, Vol.56/1(2007).
[14]. Tang, Q. H., “ MD simulation of dislocation mobility during cutting with diamond tip on silicon”,Materials Science in Semiconductor Processing,Vol.10 ,pp.270-275(2007).
[15]. Shimada, S.,“Molecular dynamics analysis of nanometric cutting process”, Ann. CIRP, Vol.29, No.283, pp.6(1995).
[16]. 葉佳榮,「以準穩態奈米靜力學方法模擬具缺陷材料之正交切削分析」,國立台灣科技大學大學機械工程研究所碩士論文,民國九十六年。
[17]. Lin, Z. C. and J. C. Huang, “A nano-orthogonal Cutting Model Based on a Modified Molecular Dynamics Technique,” Nanotechnology, Vol. 15, pp. 510-519(2004).
[18]. Irving, J. H., and Kirkwood, J. G., “The statistical mechanical theory of transport properties. IV. The equations of hydrodynamics”, J. Chem. Phys., Vol.18, pp. 817-829(1950).
[19]. Kwon, Y.W., and Jung, S. H., “Atomic model and coupling with continuum model for static equilibrium problems” Computers and Structures,Vol.82, September/October, Computational Structures Technology, pp. 1993-2000(2004).
[20]. IGOR Ye. Telitchev, OLEG Vinogradov” A method for quasi-static analysis of topologically variable lattice structures” , International Journal of Computational Methods, Vol. 3, pp. 71-81, March(2006).
[21]. Jeng, Yeau-Ren and Chung-Ming Tan,“Study of Nanoindentation Using FEM Atomic Model,” Journal of Tribology, Vol. 126, pp. 767-774(2004).
[22]. Hu, S. Y., M. Ludwig, P. Kizler, and S. Schmauder,“Atomistic simulations of deformation and fracture of α-Fe,” Modelling Simul. Mater. Sci. Eng., Vol. 6, pp. 567–586 (1998).
[23]. Saraev, D., P. Kizler, S. Schmauder, “The influence of Frenkel defects on the deformation and fracture of alpha-Fe single crystals,” Simul. Mater. Sci.,pp.1013–1023(1999).
[24]. 陳雨樵,「以分子模擬方法研究奈米線之機械性質」,國立中正大學機械工程研究所,碩士論文,民國九十五年。
[25]. 黃維富,「銅鎳面心立方晶體之奈米切削能及切削力模式研究」,國立台灣科技大學大學機械工程研究所博士論文,民國九十五年。
[26]. Tomaszewski, P.E., “Jan Czochralski - Father of the Czochralski method”, Journal of Crystal Growth ,Vol. 236 (1-3), pp. 1-4(2002)
[27]. 林明獻, 矽晶圓半導體材料技術, 全華科技圖書股份有限公司,台北(1999)
[28]. Foll, H., B.O. Kolbesen, Microdefects in silicon and their relation to point defects, Journal of Crystal Growth, pp. 907-916(1981)
[29]. J. Vanhellemont, E. Dornberger, J. Esfandyari, G. Kissinger, M.-A. Trauwaert, H. Bender, D. Gräf, U. Lambert,W.V. Ammon, Trans. Tech. Publications, Switzerland, Mater. Sci. Forum, pp. 258-263, (1997)
[30]. T. Sinno, E. Dornberger, W. von Ammon, R. A. Brown, F.Dupret, Materials Science and Engineering, Vol. 28, pp. 149(2000)
[31]. F. Secco d’Aragano, J. Electrochem. Soc. Vol. 119, pp. 948(1972)
[32]. J. Ryuta, E. Morita, T. Tanaka, Y. Shimanuki and Jpn. J. Appl. Phys. Vol. 29 (1990)
[33]. E. Morita, J. Ryuta, T. Tanaka, Y. Shimanuki, Chemical Surface Preparation, Passivation and Cleaning for Semiconductor Growth and Processing Symposium, Mater. Res. Soc., Pittsburgh, PA, USA, 1992, pp. 161-166.
[34]. E. Morita, H. Okuda, F. Inoue, in: “Proceedings of the Semiconductor Silicon”, Electrochem. Soc. Proc., pp. 156(1994)
[35]. M. Suhren, D. Gräf, R. Schmolke, H. Piontek and P. Wagner, Inst. Phys. Conf. Ser. Vol. 149, pp. 301.
[36]. Girifalco, L. A., and V. G. Weizer, “Application of the Morse Potential Function to Cubic Metals,” Phys. Rev., Vol. 114, pp. 687-690(1959).
[37]. Rahman, A., “Correlations in motions of atoms in liquid atom” Phys. Rev.,A,vol.136,pp.405-411(1964).
[38]. G. V. Reklaitis, "Engineering Optimization: Methods and Application".
[39]. Lin, Z. C. and J. C. Huang, “3D nano-scale cutting model for nickel material,” Journal of Materials Processing Technology, pp.27–36 (2007)
[40]. M.F. Aly, E. Ng, S.C. Veldhuis, and M.A. Elbestawi , “Prediction of cutting forces in the micro-machining of silicon using a hybrid molecular dynamic-finite element analysis force model,” International Journal of Machine Tool & Manufacture, pp.1729-1737(2007).
[41]. 李沛群,「矽單晶提拉生長過程支點缺陷動力學研究」,國立台灣大學化學工程研究所,碩士論文,民國九十一年。
[42]. P. M. Fahey, P. B. Griffin, and J. D. Plummer, “Point defects and dopant diffusion in silicon” Reviews of Modern Physics, Vol. 61 pp. 289-384(1989)
[43]. Van Vechten, J.A. “Effect of reconstruction of a semiconductor surface on the crystal growth” Applied Physics Letters Vol. 26, pp. 593-596(1975)
[44]. Hu, S.M., “Defects in silicon substrates” J Vac Sci Technol, Vol. 14 No. 2, pp. 17-31(1976)
[45]. Petroff, P.M., De Kock, A.J.R., “The formation of interstitial swirl defects in dislocation-free floating-zone silicon crystals” Journal of Crystal Growth, Vol. 36, No. 1, pp. 4-10(1976)
[46]. 彭世軒,「以三維準穩態分子靜力學切削模式模擬奈米級正交切削單晶矽在不同切削條件之研究」,國立台灣科技大學大學機械工程研究所碩士論文,民國九十八年。
[47]. R. Komanduri, N. Ch, rasekaran and L. M.Raff, “ Molecular dynamics simulation of the nanometric cutting of silicon,” Philosphimcaagl Azinbe, Vol. 81, No. 12,pp. 1989-2019(2001)
[48]. 黃仁清,「綜合分子動力學與變形理論於奈米切削之研究」,國立台灣科技大學大學機械工程研究所博士論文,民國九十五年。
[49]. Inamura, T., Shimada, S., Takezawa, N., and Ikawa,N., “ Crack initiation in machining monocrystalline silicon”, Annals of the CIRP, Vol. 48 pp.81–84. (1999).
[50]. Inamura, T., Shimada, S., and Nakahara, N., “Brittle,“ductile transition phenomena observed in computer simulations of machining defect-free monocrystalline silicon”, Annals of the CIRP,Vol. 46 pp.31–34. (1997).
[51]. Komanduri, R., Chandrasekaran N. and Raff L. M., “Simulation of nanometric cutting of single crystal aluminum—effect of crystal orientation and direction of cutting” , Wear, Vol.242, No. 60, pp.8 (2000).
[52]. Cai, M. B., Li*, X. P., Rahman,M., “ Crack initiation in relation to the tool edge radius and cutting conditions in nanoscale cutting of silicon” , International Journal of Machine Tool & Manufacture ,pp.562-569(2007).
[53]. Arsenault, R.J. and J.R. Beeler, “Computer Simulation in Material Science,” Asm. International, USA(1988).
[54]. Smith, R. and M. Jakas, “Atomic and Ion Collision in Solids and At Surface: Theory, Simulation and Application,” Cambridge Universty Press, USA(1977).

QR CODE