簡易檢索 / 詳目顯示

研究生: 張修源
Xiu-Yuan Zhang
論文名稱: 演算法應用於同步磁阻馬達開發之分析與設計
Analysis and Design of Algorithm Applied to Synchronous Reluctance Motor Development
指導教授: 楊念哲
Nien-Che Yang
蕭鈞毓
Chun-Yu Hsiao
口試委員: 許超雲
Chao-yun Syu
洪聯馨
Lian-Shin Hung
楊念哲
Nien-Che Yang
蕭鈞毓
Chun-Yu Hsiao
蕭弘清
Hong-Cing Siao
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 191
中文關鍵詞: 磁阻馬達田口法演算法
外文關鍵詞: reluctance motor, Taguchi method, algorithm
相關次數: 點閱:357下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著環保與節能意識提高,電動機(馬達)佔電氣負載大部分的用電,因此研發高效能馬達便成為了節能首選。磁阻馬達有著結構簡單、生產成本低及高效率等優勢,其純矽鋼片的轉子結構,讓它能夠應用於高溫場所。
同步磁阻馬達雖有諸多優勢,但也避免不了其振動及噪音大與轉子慣量小的缺點,因此本論文將使用有限元素軟體ANSYS Maxwell,針對18.5 kW同步磁阻馬達做一系列的分析與研究,最初以選型分析得出應用層面較廣的折角型磁障層,再透過靈敏度分析找出影響轉矩漣波與功率因數較大的轉子結構,並定義出結構的分析順序。
後續利用一次一因子試誤法、田口法與相關演算法,優化其轉子結構,其中包括磁障層寬度、角度、形狀、橋部、肋部、積厚、氣隙、轉子斜列、材料等九種參數,並以最大化其功率因數與最小化其轉矩漣波為設計目標,使其輸出特性與穩定性能夠達到改善。
最後代入磁鐵輔助的設計,透過在轉子中加入低成本的磁石,讓同步磁阻馬達也能夠在性能上可以有更大的提升。所設計出的兩款馬達能根據應用場合選用合適的機型。


With the improvement of environmental protection and energy saving awareness, electric motors (motors) account for most of the electricity consumption of electrical loads, so the development of high-efficiency motors has become the first choice for energy saving. The reluctance motor has the advantages of simple structure, low production cost and high efficiency. The rotor structure of its pure silicon steel sheet allows it to be used in high temperature places.
Although the synchronous reluctance motor has many advantages, it cannot avoid the disadvantages of large vibration and noise and small rotor inertia. Therefore, this paper will use the finite element software ANSYS Maxwell to do a series of analysis and research on the 18.5 kW synchronous reluctance motor. At first, the angle-shaped magnetic barrier layer with a wide application level was obtained through the selection analysis, and then through the sensitivity analysis, the rotor structure that affected the torque ripple and the power factor was found, and the analysis sequence of the structure was defined.
Subsequently, the rotor structure is optimized using the one-factor trial-and-error method, Taguchi method and related algorithms, including the width, angle, shape, bridge, rib, thickness, air gap, rotor skew, material, etc. of the magnetic barrier layer. Nine parameters, and the design goal is to maximize its power factor and minimize its torque ripple, so that its output characteristics and stability can be improved.
Finally, the magnet-assisted design is introduced. By adding low-cost magnets to the rotor, the performance of the synchronous reluctance motor can also be greatly improved. The two designed motors can choose the appropriate model according to the application.

摘要 i Abstract ii 誌謝 iii 目錄 iv 圖目錄 vi 表目錄 xii 第一章 緒論 1 1.1研究背景 1 1.2研究動機與目的 2 1.3馬達國際市場概況 4 1.4電機應用15~20 kW 6 1.4.1油壓電梯用三相沉油式電動馬達 6 1.4.2捲揚機 7 1.4.3標準式馬達驅動遠心分離機 8 1.5相關文獻回顧 9 1.6本論文各章節大綱 10 1.7主要貢獻 10 第二章 各類馬達原理與特性 11 2.1前言 11 2.2常用各類馬達 11 2.2.1直流有刷馬達(DC Brush Motor) 11 2.2.2直流無刷馬達(Brushless DC Motor, BLDCM) 12 2.2.3單相感應馬達(AC Single-phase Induction Motor) 13 2.2.4三相感應馬達(AC Three-phase Induction Motor) 13 2.2.5永磁同步馬達(Permanent Magnet Motor) 14 2.2.6伺服馬達(Servo Motor) 15 2.2.7步進馬達(Stepping Motor) 15 2.2.8 開關式磁阻馬達(Switch-reluctance Motor) 16 2.3同步磁阻馬達(Synchronous-reluctance Motor) 17 2.3.1同步磁阻馬達結構 17 2.3.2同步磁阻電機各項參數 19 2.4結語 21 第三章 同步磁阻馬達 4極 48槽轉子設計 23 3.1磁阻馬達轉子選型 24 3.1.1 選型一—圓弧型 25 3.1.2 選型二—折角型 31 3.1.3 選型分析結果 38 3.2磁阻馬達轉子靈敏度分析 39 3.3相關同步磁阻馬達轉子重要參數 43 3.3.1一次一因子試誤法 43 3.3.2磁阻馬達氣隙 43 3.3.3橋部 46 3.3.4肋部 50 3.3.5磁障層加寬長度 53 3.3.6磁障層形狀 76 3.3.7磁障層展開角 88 3.3.8轉子斜列(Skew) 98 3.3.9積厚 102 3.3.10轉子材料 105 3.4磁阻馬達之最佳化設計與分析 109 3.4.1前言 110 3.4.2田口法最佳化設計 110 3.4.3有限元素分析與磁阻馬達幾何結構 118 3.4.4磁阻馬達轉矩漣波改善之改變第一層磁障角 121 3.4.5磁阻馬達之效率分析 123 3.5結語 126 第四章 演算法分析驗證 127 4.1前言 127 4.2演算法介紹 129 4.3基因演算法(genetic algorithm, GA) 129 4.3.1基因演算架構流程 131 4.3.2基因演算-設定目標 134 4.3.3基因演算-18.5 kW磁阻馬達分析結果 135 4.3.4基因演算-18.5 kW磁阻馬達分析比較 137 4.4順序非線性程式設計(Sequential nonlinear programming, SNLP)介紹 139 4.4.1順序非線性程式設計參數設定 140 4.4.2順序非線性程式設計分析結果 140 4.4.3順序非線性程式設計分析比較 141 4.5基因演算&順序非線性程式設計最佳解比較 144 第五章 磁鐵輔助設計磁阻馬達分析 150 5.1前言 150 5.2非稀土磁鐵材料介紹 150 5.2.1鐵氧體介紹 151 5.2.2鋁鎳鈷磁鐵介紹 152 5.2.3磁石性能比較 153 5.3磁鐵輔助設計磁阻馬達-材料性能測試 155 5.4磁鐵輔助同步磁阻馬達分析(非自啟動) 156 5.5補充延伸-三種同步磁阻馬達比較 161 第六章 結論與未來研究建議 163 6.1結論 163 6.2未來研究建議 164 參考文獻 165 附錄 174 附錄A 174 附錄B 174 附錄C 175 附錄D 178

[1] bigbest,關於大青節能-困難的環境,找到發亮的未來。2021年10月20日取自:https://www.bigbestsol.com/webls-zh-tw/msg/Company-Profile.html.
[2] INSIDE,市調顯示:8 成台灣民眾認同 2024 電動機車破百萬台!2021年10月20日取自:https://www.inside.com.tw/article/23227-80-percentage-of-Taiwanese-people-support-electric-scooter.
[3] Magnosphere,釹磁鐵的價格發展。2021年10月21日取自:https://www.magnosphere.co.uk/price-development-for-neodymium-magnets.
[4] 每日頭條,感應與永磁電機究竟誰主宰天下?讀完這篇文章你就知了。2021年10月21日取自:https://kknews.cc/news/lrygzme.html.
[5] 經濟日報,東元電動車動力系統 T Power勇奪台灣精品金質獎。2021年10月21日取自:https://money.udn.com/money/story/5612/5043409.
[6] 馬達額定效率等級表。2021年10月21日取自:https://www.ctmotor.com.tw/images/upfiles/manual/TW_20170713042708.pdf.
[7] Globol Information,電動動力馬達市場:各類型,各額定功率,各用途,各地區到2025年的全球市場預測。2022年7月4日取自:https://www.giichinese.com.tw/report/mama931151-electric-traction-motor-market-by-type-ac-dc-power.html.
[8] 薛博文、李明軒、陳靖文和陳正虎,2021,泛用型變頻器於同步磁阻馬達液壓動力系統之應用,機械新刊,2022年7月4日取自:https://www.phdbooks.com.tw/cn/magazine/detail/1730.
[9] 三新,中功率馬達(17.5kw-18.5kw)/(17.5 kw - 37 kw) (4系列)。2022年7月4日取自:http://www.sanshin-co.com.tw/index.php?option=product&lang=cht&task=pageinfo&id=127&belongid=125&index=1.
[10] 長岡機電,捲揚機PM24BU-7000。2022年7月4日取自:https://www.nagaoka.com.tw/procate-a-01-product73.
[11] 百度百科,捲揚機。2021年11月2日取自:https://baike.baidu.com/item/.
[12] 東碩機械,標準式馬達驅動遠心分離機。2022年7月4日取自:http://www.dongsuo.com.tw/images/CPage2-2.htm.
[13] 維基百科,離心機。2021年11月2日取自:https://zh.wikipedia.org/wiki/離心機。
[14] Z. Zhang, S. Yu, F. Zhang, S. Jin, and X. Wang, “Electromagnetic and Structural Design of a Novel Low-Speed High-Torque Motor with Dual-Stator and PM-Reluctance Rotor,” IEEE Transactions on Applied Superconductivity, vol. 30, no. 4, 2020, doi: 10.1109/TASC.2020.2977286.
[15] H. Kim, Y. Park, S. T. Oh, H. Jang, D. H. Jung, I. S. Jang, and J. Lee, “Study on Analysis Method of Asymmetric Permanent Magnet Assistance Synchronous Reluctance Motor Considering Magnetic Neutral Plane Shift,” IEEE Transactions on Applied Superconductivity, vol. 30, no. 4, 2020, doi: 10.1109/TASC.2020.2968012.
[16] A. Credo, G. Fabri, M. Villani, and M. Popescu, “Adopting the Topology Optimization in the Design of High-Speed Synchronous Reluctance Motors for Electric Vehicles,” IEEE Transactions on Industry Applications, vol. 56, no. 5, pp. 5429-5438, 2020, doi: 10.1109/TIA.2020.3007366.
[17] S. Stipetic, D. Zarko, N. Cavar, “Adjustment of Rated Current and Power Factor in a Synchronous Reluctance Motor Optimally Designed for Maximum Saliency Ratio,” vol. 56, no. 3, pp. 2481-2490, 2020, doi: 10.1109/TIA.2020.2971442.
[18] C. T. Liu, P. C. Shih, Z. H. Cai, S. C. Yen, H. N. Lin, Y. W. Hsu, T. Y. Luo, and S. Y. Lin, “Rotor Conductor Arrangement Designs of High-Efficiency Direct-on-Line Synchronous Reluctance Motors for Metal Industry Applications,” IEEE Transactions on Industry Applications, vol. 56, no. 4, pp. 4337-4344, 2020, doi: 10.1109/TIA.2020.2983903.
[19] 維基百科,電刷。2021年11月2日取自:https://zh.wikipedia.org/wiki/電刷。
[20] 趣味實驗,直流小馬達。2022年7月4日取自:http://haha90.phy.ntnu.edu.tw/content/funExperiment/allFunExps/dcMotor/dcMotor.html.
[21] 每日頭條,SkyRC Toro X8 Pro 1/8 無刷馬達,2022年7月4日取自:https://kknews.cc/digital/xqr8xg.html.
[22] 痞客幫,淺談12V風扇(直流無刷馬達)運作原理及風力發電應用---DIY小教室。2022年7月4日取自:https://jandjason.pixnet.net/blog/post/299578922.
[23] 汪永文和劉啟欣(民109),電工機械Ⅰ,新北市:全華圖書。
[24] 耀樺,東元單相感應馬達。2022年7月4日取自:https://www.yao-hua.com.tw/product/single-phase-induction-motor.
[25] 東岱,東元低壓三相感應電動機IE3鋁殼馬達AERV AEQV系列。2022年7月4日取自:http://www.dondai.com.tw/page/product/show.aspx?num=55.
[26] 中文百科,轉子鼠籠式與繞線式。2021年11月2日取自:https://www.newton.com.tw/wiki/轉子鼠籠式與繞線式。
[27] 東岱,東元高效永磁同步馬達-DVLF‧DVLS系列 (永磁馬達)。2022年7月4日取自:http://www.dondai.com.tw/page/product/show.aspx?num=68&kind=76&page=2.
[28] 每日頭條,關於永磁同步電機失磁故障的對策,永磁電機失磁怎麼辦?2022年7月4日取自:https://kknews.cc/car/4vaq9vq.html.
[29] 大銀微系統,E1系列伺服馬達。2022年7月4日取自https://www.hiwinmikro.tw/zh/product/ac-servo-motor/ac-servo-motor-e1-series.
[30] 知乎,抖抖.....抖個不停的伺服電機——轉動慣量匹配技術及資料分享。2022年7月4日取自:https://zhuanlan.zhihu.com/p/140077731.
[31] 東元精電,步進馬達-DST42。2022年7月4日取自:http://www.tedmotors.com/_tw/pro/detail.php?pid=169&cid=76&f=.
[32] GETIT01.COM,步進電機、伺服電機、舵機的原理和區別?2022年7月4日取自:https://www.getit01.com/p20171228237374664/.
[33] L. Szamei, and T. Vajsz, “Controlling of switched reluctance motor drives,” in 2015 XXXI. Kandó Scientific Conference, 19 Nov. 2015.
[34] Spinningmagnets, “Switched Reluctance Motors, an Old Design is Suddenly Important Now,” electric bike, https://www.electricbike.com/switched-reluctance-motors-an-old-design-is-suddenly-important-now/ (accessed July 4, 2022).
[35] Reza – Rajabi Moghaddam, “Synchronous Reluctance Machine (SynRM) Design,” KTH, Stockholm, Master Thesis, 2007.
[36] 張志耿,新型同步磁阻電機的設計及運行特性分析,福州大學電機系,碩士論文,2016年。
[37] 字媒體,新能源汽車驅動電機深度分析。2021年11月7日取自:https://zi.media/@yidianzixun/post/WavhcN.
[38] S. Urschel, J. Dolgirev, J. Schullerer, and P. Hauck, “Resource Efficient Synchronous Motor in Flux Barrier Design with Enlarged Air Gap,” in 2016 19th International Conference on Electrical Machines and Systems (ICEMS), 13-16 Nov. 2016.
[39] Miller, “Some Essential Features of the Synchronous Reluctance Motor,” JMAG, https://www.jmag-international.com/engineers_diary/034/?utm_source=mailer&utm_medium=mailnews&utm_campaign=20210609 (accessed July 4, 2022).
[40] T. Mohanarajah, J. Rizk, M. Nagrial, and A. Hellany, “Optimisation of Flux Barrier Parameters in Synchronous Reluctance Machines,” in 2015 IEEE Conference on Energy Conversion (CENCON), 19-20 Oct. 2015.
[41] H. Yu, X. Zhang, J. Ji, and L. Xu, “Rotor Design to Improve Torque Capability in Synchronous Reluctance Motor,” in 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), 11-14 Aug. 2019.
[42] G. Todorov, and B. Stoev, “Parameters and Torque Ripple of Synchronous Reluctance Motors with Different Rotor Topology,” in 2018 20th International Symposium on Electrical Apparatus and Technologies (SIELA), 3-6 Jun. 2018.
[43] A. Nobahari, A. Vahedi, and F. Mahmouditabar, “Torque Profile Improvement of a Synchronous Reluctance Motor through Optimizing the Rotor Flux Barriers Ends,” in 2019 International Power System Conference (PSC), 9-11 Dec. 2019.
[44] 徐珂、應紅亮、黃蘇融和張琪,轉子分段斜極對永磁同步電機電磁噪聲的削弱影響,電氣工程,第53卷第11期,第2248-2254頁,2019年。
[45] Y. Guo, J. Si, C. Gao, H. Feng, and C. Gan, “Improved Fuzzy-Based Taguchi Method for Multi-Objective Optimization of Direct-Drive Permanent Magnet Synchronous Motors,” IEEE Transactions on Magnetics, vol. 55, no. 6, 2019, doi: 10.1109/TMAG.2019.2897867.
[46] S. Wang, Y. Wang, C. Liu, G. Lei, J. Zhu, and Y. Guo, “Detent Force Minimization of a Tubular Flux-Switching Permanent Magnet Motor Using Un-Equal Width Stator Slots Based on Taguchi Method,” IEEE Transactions on Applied Superconductivity, vol. 30, no.4, 2020, doi: 10.1109/TASC.2020.2976068.
[47] J. He, G. Li, R. Zhou, and Q. Wang, “Optimization of Permanent-Magnet Spherical Motor Based on Taguchi Method,” IEEE Transactions on Magnetics, vol. 56, no.2, 2020, doi: 10.1109/TMAG.2019.2947863.
[48] X. Sun, Z. Shi, and J. Zhu, “Multiobjective Design Optimization of an IPMSM for EVs Based on Fuzzy Method and Sequential Taguchi Method,” IEEE Transactions on Industrial Electronics, vol. 68, no. 11, pp. 10592-10600, 2021, doi: 10.1109/TIE.2020.3031534.
[49] 維基百科,演算法。2022年7月4日取自:https://zh.wikipedia.org/wiki/算法。
[50] 秒董C++,【秒懂AI】02_基因演算法。2022年7月4日取自:https://www.youtube.com/watch?v=F00ZOPVftjM&t=499s.
[51] X. Zhao, Z. Sun, and Y. Xu, “Multi-Objective Optimization Design of Permanent Magnet Synchronous Motor Based on Genetic Algorithm,” in 2020 2nd International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI), 23-25 Oct. 2020, doi: 10.1109/MLBDBI51377.2020.00086.
[52] M. Etemadi, and R. Haghighian, “Design Optimization of Wound Rotor Induction Motor Using Genetic Algorithm,” in 2019 5th Conference on Knowledge Based Engineering and Innovation (KBEI), 28 Feb.-1 Mar. 2019, doi: 10.1109/KBEI.2019.8735061.
[53] H. Chaoui, M. Khayamy, O. Okoye, and H. Gualous, “Simplified Speed Control of Permanent Magnet Synchronous Motors Using Genetic Algorithms,” IEEE Transactions on Power Electronics, vol. 34, no. 4, pp. 3563-3574, 2019, doi: 10.1109/TPEL.2018.2851923.
[54] A. G. D. Castro, P. R. U. Guazzelli, C. M. R. D. Oliveira, W. C. D. A. Pereira, G. T. D. Paula, and J. R. B. D. A. Monteiro, “Optimized Current Waveform for Torque Ripple Mitigation and MTPA Operation of PMSM with Back EMF Harmonics Based on Genetic Algorithm and Artificial Neural Network,” IEEE Latin America Transactions, vol. 18, no. 9, pp. 1646-1655, 2020, doi: 10.1109/TLA.2020.9381808.
[55] 痞客邦,[演算法] 基因演算法(Genetic Algorithm)。2022年7月4日取自:https://jialin128.pixnet.net/blog/post/28315398-%5B演算法%5D-基因演算法%28genetic-algorithm%29.
[56] 每日頭條,梯度到底是個什麼東西,物理意義和數學意義分別是什麼?2022年7月4日取自:https://kknews.cc/education/8kyyv2e.html.
[57] 維基百科,梯度。2022年7月4日取自:https://zh.wikipedia.org/wiki/梯度。
[58] Y. Okamoto, Y. Tominaga, S. Wakao, and S. Sato, “Improvements in Material-Density-Based Topology Optimization for 3-D Magnetic Circuit Design by FEM and Sequential Linear Programming Method,” IEEE Transactions on Magnetics, vol. 50, no. 2, 2014, doi: 10.1109/TMAG.2013.2285261.
[59] S. G. A. Seifossadat, M. Saniei, and A. Raeszadeh, “Reactice Power Pricing in Competitive Electric Markets Using a Methodology Based on the Theory of Marginal Costs with Sequential Linear Programming,” in 2007 42nd International Universities Power Engineering Conference, 4-6 Sep. 2007.
[60] Z. Liu, Y. Hu, J. Wu, B. Zhang, and G. Feng, “A Novel Modular Permanent Magnet-Assisted Synchronous Reluctance Motor,” IEEE Access, vol. 9, pp. 19947-19959, 2021, doi: 10.1109/ACCESS.2021.3054766.
[61] M. Degano, M. Murataliyev, W. Shuo, D. Barater, G. Buticchi, W. Jara, N. Bianchi, M. Galea, and C. Gerada, “Optimised Design of Permanent Magnet Assisted Synchronous Reluctance Machines for Household Appliances,” IEEE Transactions on Energy Conversion, vol. 36, no. 4, pp. 3084-3095, 2021, doi: 10.1109/TEC.2021.3076675.
[62] R. Cao, E. Su, and M. Lu, “Comparative Study of Permanent Magnet Assisted Linear Switched Reluctance Motor and Linear Flux Switching Permanent Magnet Motor for Railway Transportation,” IEEE Transactions on Applied Superconductivity, vol. 30, no. 4, 2020, doi: 10.1109/TASC.2020.2965874.
[63] 露天拍賣,鐵氧體磁鐵 40*25*10 mm。2022年7月4日取自:https://www.ruten.com.tw/item/show?21709394085053.
[64] 右任磁電,鋁鎳鈷磁鐵。2022年7月4日取自:https://uz-magnet.com.tw/portfolio-view/uz-magner_05/.
[65] 維基百科,鐵氧體。2022年7月4日取自:https://zh.wikipedia.org/wiki/鐵氧體。
[66] 磁之超市-磁鐵的行家,2022年7月4日取自:https://www.msmt.com.tw/.
[67] 維基百科,鋁鎳鈷合金。2022年7月4日取自:https://zh.wikipedia.org/wiki/鋁鎳鈷合金。
[68] T. A. Huynh, and M. F. Hsieh, “Irreversible Demagnetization Analysis for Multilayer Magnets of Permanent Magnet-Assisted Synchronous Reluctance Machines Considering Current Phase Angle,” IEEE Transactions on Magnetics, vol. 55, no. 7, 2019, doi: 10.1109/TMAG.2019.2911867.
[69] M. Z. Islam, A. Arafat, S. S. R. Bonthu, and S. Choi, “Design of a Robust Five-Phase Ferrite-Assisted Synchronous Reluctance Motor With Low Demagnetization and Mechanical Deformation,” IEEE Transactions on Energy Conversion, vol. 34, no. 2, pp. 722-730, 2019, doi: 10.1109/TEC.2018.2882780.

無法下載圖示 全文公開日期 2032/08/24 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE