簡易檢索 / 詳目顯示

研究生: 李哲綸
Jhe-Lun Li
論文名稱: 緩衝模組中之碳纖彈片的設計與分析
The Design and Analysis of a CFRP Spring Element for a Cushioning Module
指導教授: 趙振綱
Ching-Kong Chao
徐茂濱
Mau-Pin Hsu
口試委員: 黃心豪
Hsin-Haou Huang
鄭正元
Jeng-Ywan Jeng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 217
中文關鍵詞: 緩衝模組非線性剛性緩衝儲能
外文關鍵詞: Carbon fiber, prepreg
相關次數: 點閱:128下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究透過力學分析,改良設計一具有緩衝及儲能並重的鞋底緩衝結構,期望藉此減少退化性關節炎患者的疼痛不適感,或得以降低或延遲退化性關節炎發生的機率。
本研究所設計之緩衝模組具有非線性的剛性效果,於下壓初期會產生較軟的彈性,於持續下壓期間其剛性會逐漸增加,故可於有限的變形空間內儲存較多的能量,此能量可提供鞋底作為回彈的助力,減少穿戴者下肢肌肉的出力,減輕其負擔。
本研究運用有限元素分析法進行模擬,並改良前人所設計之結構,例如:彈片曲率、加裝連桿等,設計出兩組緩衝模組,其一為使用ECM-451 預浸布,並製作與實測緩衝模組雛型,實測之力量曲線具有的非線性趨勢,大致符合有限元素法的模擬結果,但其儲能為29.7 J,與數值模型預測的 39.9 J 有一段差距,尚須改進。其二為改用碳纖剛性較強之ECU-242 預浸布,根據其材料參數所模擬設計的數值模型,在35 mm 的變形空間內,儲能可提升至53.5 J,已具備走路時需要的完全儲能。以上的兩個模擬的緩衝模組,根據膝關節受力(KCF)的衝擊峰值判別,皆有足夠的緩衝效果。
最後,針對ECM-451 碳纖維預浸布熱壓製程進行調整,來進一步修改其熱壓製程之參數,可將舊製程所製作出彈片的楊氏係數由35.2 GPa 提升至87.9 GPa,但距離理論值的134 GPa,仍有待改進。


In this study, through mechanics analysis, an improved design of a sole
cushioning module, emphasizing both cushioning and energy storage, is
expected to reduce pain and discomfort in patients with degenerative arthritis,
or to reduce the occurrence of degenerative arthritis.
The designed cushioning modules have a characteristic of non-linear
stiffness effect in order to store more energy within a very limited space such
as at bottom of shoes. The stored energy can be used to boost the rebound
action of next footstep, thus reducing muscle effort from lower limbs for the
wearer.
In this study, finite element analysis is used to simulate and improve the
previous design. By redesigning curvature of spring element and adding a
connecting rod, two major cushioning modules were designed. The first one
used a ECM-451 prepreg material, and a prototype was fabricated and tested
for its mechanical performance. Tested force-deformation curve has similar
tendency as the simulated results. However, its 29.7 J energy storing capacity
is inferior to the predicted 39.9 J. The second one used a ECU-232 prepreg
composed of stronger carbon fibers. The simulated results from the
numerical model showed that energy storage can be increased up to 53.5 J,
within a limited space of 35 mm. According to the criteria of impact peak for
the knee-contact-force, both designs fulfilled the requirement of sufficient
cushioning for walking.
Finally, by modifying the thermal pressing process and parameters for
the ECM-451 carbon fiber prepreg, the Young's modulus of the CF spring
element produced by the old process was increased from 35.2 GPa to 87.9
GPa, yet still leaving an effort to catch up its theoretical value of 134 GPa.

摘要 ........................................................................ i ABSTRACT .............................................. ii 誌謝 ................................................................... iv 目錄 ....................................................................... v 圖目錄 ...................................................................... ix 表目錄 ............................................... xvii 本文所用之符號說明 ................................................... xix 第一章 緒論 ..................................................... 1 1.1 前言 ............................................................... 1 1.2 研究動機與目的 ........................................ 1 1.3 文獻回顧 ...................................................... 2 1.4 本文架構 .............................................. 11 第二章 緩衝模組之主體設計 ......................................... 13 2.1 複合材料理論 ................................................ 13 2.1.1 單層預浸布材料性質探討 ........................................ 14 2.1.2 單層複合材料力學行為探討 .................................... 23 2.1.3 薄層板力學行為探討 ................................................ 30 2.2 S 型彈片之儲能與剛性設計探討 ........................................ 43 2.2.1 S 型彈片之應力與儲能關係 ..................................... 43 2.2.2 S 型彈片之非線性剛性行為探討 ............................. 47 2.3 連桿結構之設計與應用 ....................................................... 51 2.3.1 連桿結構之設計概念說明 ........................................ 51 2.3.2 連桿之臨界挫曲應力探討 ........................................ 55 2.4 小結 ......................................................... 58 第三章 緩衝模組之設計與探討 ................................................ 59 3.1 有限元素分析參數設定探討 ............................................... 60 3.1.1 元素種類 .................................................................... 60 3.1.2 網格切割 .................................................................... 61 3.1.3 座標系統 .................................................................... 63 3.2 緩衝模組之結構設計改良 ................................................... 67 3.2.1 S 型彈片模組之結構改良概念說明 ......................... 67 3.2.2 改良模組與原始模組之邊界條件與材料參數說明 71 3.2.3 平行下壓動作模擬之力量與儲能探討.................... 75 3.3 碳纖維預浸布之材料性質與彈片曲率設計探討 .............. 80 3.3.1 碳纖維預浸布ECU-242 與ECM-451 之參數比較 80 3.3.2 新彈片曲率設計之分析與探討 ................................ 85 3.3.3 彈片曲率設計應用於緩衝模組之應力、儲能與剛性探討 ............ 89 3.4 含連桿之緩衝模組的分析與設計 ....................................... 94 3.4.1 連桿長度與邊界條件設定說明 ................................ 94 3.4.2 連桿緩衝模組之應力、儲能與剛性 ........................ 96 3.4.3 連桿緩衝模組之傾倒與側翻動作探討.................. 103 3.4.4 應用ECU-242 預浸布之連桿緩衝模組探討 ........ 111 3.5 小結 .......................................... 119 第四章 連桿緩衝模組之實測與探討 ...................................... 120 4.1 碳纖維彈片之熱壓模具改良設計與探討 ......................... 121 4.1.1 碳纖維彈片之熱壓模具改良概念說明.................. 122 4.1.2 彈片熱壓模具之改良與驗證 .................................. 129 4.1.3 新彈片曲率之熱壓模具設計概念說明.................. 137 4.2 連桿緩衝模組之製程介紹與實測數據比較 ..................... 140 4.2.1 碳纖維複合材彈片與連桿結構製程介紹 ............. 140 4.2.2 連桿緩衝模組之力量曲線的實測與模擬比較 ..... 147 4.3 碳纖維預浸布製程改良與材料性質探討 ......................... 153 4.3.1 碳纖維預浸布製程參數探討 .................................. 153 4.3.2 碳纖維預浸布改良之材料性質測試與比較 ......... 158 4.4 小結 .............................................................. 165 第五章 結論與未來建議 .......................................................... 166 5.1 結論 ...................................................... 166 5.2 未來建議 ............................................. 168 參考文獻 ........................................................ 171 附錄A 纖維材料之體積佔比的公式推導 .................................. 174 附錄B 複合材料之橫向總應變量公式推導 .............................. 176 附錄C 緩衝模組之S 型彈片作用力分析 .................................. 178 附錄D 台麗朗各等級碳纖維絲材料性質[19] .............................. 181 附錄E 東麗工業公司各等級碳纖維絲應用領域[22] .................. 182 附錄F 連桿有效長度??之計算過程 ......................................... 183 附錄G 口試委員的提問與建議 .................................................. 184

[1] J. R. Fletcher, S. P. Esau, and B. R. Macintosh, "Economy of running:
beyond the Measurement of Oxygen Uptake," Journal of Applied
Physiology, " Vol. 107, No. 6, pp. 1918-22, Dec. 2009.
[2] N. Bascomb, The Perfect Mile: Three Athletes, One Goal, and Less
Than Four Minutes to Achieve It. Boston: Houghton Mifflin Co, 2005.
[3] M. J. Joyner, J. R. Ruiz, and A. Lucia, "Last Word on Viewpoint: The
two-hour marathon: Who and when?," Journal of Applied Physiology,
Vol. 110, No. 1, pp. 294-294. 2011.
[4] J. R. Franz, C. M. Wierzbinski, and R. Kram, "Metabolic Cost of
Running Barefoot versus Shod," Medicine & Science in Sports &
Exercise, Vol. 44, No. 8, pp. 1519-25, Aug. 2012.
[5] K. D. Tung, J. R. Franz, and R. Kram, "A Test of the Metabolic Cost of
Cushioning Hypothesis during Unshod and Shod Running," Medicine &
Science in Sports & Exercise, Vol. 46, No. 2, pp. 324-9, Feb. 2014.
[6] T. M. Lejeune, P. A. Willems, and N. C. Heglund, "Mechanics and
Energetics of Human Locomotion on Sand," (in English), The Journal of
Experimental Biology, Vol. 201, No. 13, pp. 2071-2080, Jul. 1998.
[7] W. Hoogkamer, S. Kipp, J. H. Frank, E. M. Farina, G. Luo, and R. Kram,
"A Comparison of the Energetic Cost of Running in Marathon Racing
Shoes," Sports Med, Vol. 48, No. 4, pp. 1009-1019, Apr. 2018.
[8] K. J. Riess, "Mechanical Spring Technology Improves Running
Economy in Endurance Runners," Journal of Human Sport and Exercise,
Vol. 9, No. 4, pp. 782-789. 2014.
172
[9] N. J. Hanson, K. Berg, P. Deka, J. R. Meendering, and C. Ryan, "Oxygen
Cost of Running Barefoot vs. Running Shod," International Journal of
Sports Medicine, Vol. 32, No. 6, pp. 401-6, Jun. 2011.
[10] 梁嘉陽, 運動輔具之緩衝模組的設計. 國立臺灣科技大學碩士論文,
2012.
[11] 黃偉晟, 鞋底緩衝回彈模組的設計與改良. 國立臺灣科技大學研究
所碩士論文, 2015.
[12] 李秉儒, 鞋底緩衝模組之設計與分析. 國立台灣科技大學研究所碩
士論文, 2018.
[13] Z. Hashin and B. W. Rosen, "The Elastic Moduli of Fiber-Reinforced
Materials," Journal of Applied Mechanics, Vol. 31, No. 2, pp. 223-232.
1964.
[14] Ever J. Barbero, Introduction to Composite Materials Design, Second
Edition, CRC Press , New York, 2011.
[15] Hibbeler, R. C., Mechanics of Materials, pp. 323-327, 9th Edition,
Pearson Education, 2013.
[16] 立體元素 SOLID186:
https://www.sharcnet.ca/Software/Ansys/17.0/en-us/help/ans_elem/Hl
p_E_SOLID186.html
173
[17] W. Yu, “A unified theory for constitutive modeling of composites,”
Journal of Mechanics of Materials and Structures, Vol. 11, No. 4, pp.
379-411, August 2016.
[18] R. Roos, Model for Interlaminar Normal Stresses in Doubly Curved
Laminates, doctoral dissertation, Swiss Federal Institute of Technology
ZURICH, 2008.
[19] 台塑台麗朗事業部各等級碳纖維絲之材料性質
http://www.fpc.com.tw/fpcwuploads/pdocument/pdocument_21091615501
8.pdf
[20] 張宏浩,鞋底緩衝模組剛性曲線之緩衝性能與儲能的探討,國立
臺灣科技大學研究所碩士論文,2022。
[21] S45C 中碳鋼之材料參數:http://www.shengmaw.
com.tw/productshow.php?id=241
[22] 東麗工業公司各等級碳纖維絲與預浸布型號應用領域:
https://www.cf-composites.toray/resources/data_sheets/
[23] Yulia Sokolova, Natalia Romanova, Lenar Shafigullin and Alla
Sokolova, "Carbon fiber reinforced plastic technology,"21st International
Scientific Conference on Advanced in Civil . 2018

無法下載圖示 全文公開日期 2027/08/04 (校內網路)
全文公開日期 2027/08/04 (校外網路)
全文公開日期 2027/08/04 (國家圖書館:臺灣博碩士論文系統)
QR CODE