簡易檢索 / 詳目顯示

研究生: 劉祐誠
Yu-Cheng Liu
論文名稱: 以合成氣為燃料評估Fe2TiO5載氧體在化學迴圈程序的應用
Application of the Fe2TiO5 as Oxygen Carriers for Chemical Looping Process Using the Syngas as a Fuel
指導教授: 顧 洋
Young Ku
口試委員: 蔣本基
Pen-Chi Chiang
申永順
Yung-Shune Shen
曾堯宣
Yao-Hsuan Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 152
中文關鍵詞: Fe2TiO5化學迴圈載氧體合成氣產氫
外文關鍵詞: Fe2TiO5, Chemical looping process, Oxygen carrier, Syngas, H2 production
相關次數: 點閱:252下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要利用Fe2TiO5做為化學迴圈中之載氧體,分析該載氧體在高溫環境下之攜氧量及氧化-還原過程中不同階段之晶相變化,並探討Fe2TiO5在不同球磨時間、反應溫度及燒結溫度對載氧體之反應性及再循環能力之影響,研究中分別以氫氣和合成氣 (氫氣和一氧化碳) 做為燃料氣體還原載氧體,探討載氧體於熱重分析儀及固定床反應系統中之氧化還原性,並藉由X射線繞射光譜儀、場發式電子顯微鏡及比表面積測定儀分析材料之結晶結構、表面型態、粒徑分佈、孔隙結構及比表面積等。實驗結果顯示,Fe2TiO5在900 oC下與燃料氣體進行還原反應時之熱重損失20 %,其晶相依不同的還原階段會依序形成Fe2TiO4,FeTiO3和Fe/TiO2;經還原的載氧體在與通入空氣氧化反應後則會形成Fe2O3、TiO2和微量的Fe2TiO5。Fe2TiO5粉體經過2小時球磨後將粉體製備成錠材,經900 oC高溫燒結後,維持900 oC反應溫度,反覆對Fe2TiO5進行還原-氧化操作後發現,當氧化-還原經過30次循環之後,Fe2TiO5材料表面會開始出現明顯的孔洞生成及裂紋,比表面積亦隨之增大,伴隨發現有部分團聚的現象,但不影響Fe2TiO5之反應性和再循環能力,並仍然能夠高溫環境下穩定進行1000次以上的氧化-還原操作。在固定床反應系統中,亦藉由通入水蒸氣氧化Fe/TiO2,同時使水蒸氣還原產氫,每克Fe2TiO5在900 oC的操作溫度下,每30分能夠穩定的達到8.11 mmol的產氫量。


    Applicability of Fe2TiO5 as oxygen carrier for chemical looping process (CLP) was investigated in this study. The oxygen transfer capacity and crystallization behavior of Fe2TiO5 were analyzed during the oxidization-reduction (redox) reaction. Reactivity and recyclability of oxygen carrier operated at various reaction temperatures were also estimated by thermogravimetric analyzer (TGA) and fixed bed reactor system (FBR) with inlet stream of H2 and syngas (H2 and CO) and the oxygen carrier fabricated under various milling durations and sintering temperatures. The crystal structure, surface formation, particle size distribution, pore structure and surface area of oxygen carrier were analyzed by x-ray diffraction analysis (XRD), field-emission scanning electron microscope analysis (FE-SEM) and specific surface area analyzer (BET). Experimental results indicated that the weight loss of Fe2TiO5 was ca. 20 wt% at reaction temperature of 900 oC for experiments conducted with inlet stream of syngas. The crystal phase of Fe2TiO5 was reduced to lower oxidation states, i.e. Fe2TiO4, FeTiO3, and Fe/TiO2 during the reduction reaction of oxygen carrier, and later oxidized to mixture of TiO2, Fe2O3 and trace of Fe2TiO5 phase with air. The powder of Fe2TiO5 was milled for 2 hours then formed into pellet and subsequently sintered at 900 oC before underwent the oxidization-reduction reaction continuously at 900 oC. Higher porosity and surface area and the agglomeration of oxygen carrier particles were observed with increasing the redox cycle. Stable quantity of reactivity indicated that Fe2TiO5 not only has superior reactivity but also high recyclability stability for chemical looping process over 1000 redox cycle at high operating temperature. Oxidization of oxygen carrier (Fe/TiO2) with steam in fixed bed reactor system at 900 oC generated 8.11 mmol/g hydrogen gas every 30 mins.

    Page Acknowledment I Chinese Abstract III English Abstract V Table of Contents VII List of Figures XI List of Tables XV List of Symbols XVII Chapter 1 Introduction 1 1.1 Background 1 1.2 Objectives and Scope 2 Chapter 2 Literature and Review 4 2.1 Chemical Looping Processes 4 2.1.1 Principles of Chemical Looping Processes 4 2.1.2 Trends and Developments of Chemical Looping Processes 6 2.2 Characteristics of Oxygen Carrier 9 2.2.1 Oxygen Transfer Capacity 10 2.2.2 Reduction and Oxidation Reactions in Gas Conversions 11 2.2.3 Reactivity, Recyclability and Durability 12 2.2.4 Mechanical Strength 15 2.2.5 Suitable Particle Size and Pore Structure 17 2.2.6 Other Characteristic of Oxygen Carrier 19 2.3 Selection and Performance of Oxygen Carriers 20 2.3.1 Nickel Based of Oxygen Carriers 21 2.3.2 Copper Based of Oxygen Carriers 21 2.3.3 Iron Based of Oxygen Carriers 22 2.3.4 Other Type of Oxygen Carriers 24 2.4 Fe2TiO5 Structure and Characteristics 25 2.4.1 Basic Information of Fe2TiO5 Sreucture 25 2.4.2 Purposes of Fe2TiO5 in Chemical Looping Process 27 Chapter 3 Experimental Procedures and Apparatus 33 3.1 Chemicals 33 3.2 Apparatus 34 3.3 Experimental Procedures 35 3.3.1 Experimental Framework 35 3.3.2 Prepare the pellet of Fe2TiO5 40 3.3.3 Characterization Analysis 40 Chapter 4 Results and Discussion 47 4.1 Background Experiments 47 4.2 Characterization of Fe2TiO5 in Thermogravimetric Analysis System 50 4.2.1 Characterization of Fe2TiO5 under H2 Atmosphere 50 4.2.1.1 Thermogravimetric (TG) Analysis 50 4.2.1.2 X-ray Diffraction (XRD) Analysis 56 4.2.1.3 Scanning Electron Microscope (SEM) Analysis 60 4.2.2 Characterization of Fe2TiO5 under Syngas Atmosphere 65 4.2.2.1 Thermogravimetry (TG) Analysis 76 4.2.2.2 X-ray Diffraction (XRD) Analysis 84 4.2.2.3 Scanning Electron Microscope (SEM) Analysis 87 4.2.2.4 BET Specific Surface Area Analysis 92 4.2.2.5 Long-Term Recyclability of Fe2TiO5 94 4.3 Reactivity of Fe2TiO5 in Fixed Bed Reactor System 96 4.3.1 Redox reaction of Fe2TiO5 96 4.3.2 H2 Production of Fe2TiO5 100 Chapter 5 Conclusions and Recommendations 105 Reference 109 Appendix 116 VITA 127

    Abad, A., J. Adánez, A. Cuadrat, F. García-Labiano, P. Gayán, and L. F. de Diego, "Kinetics of Redox Reactions of Ilmenite for Chemical-Looping Combustion," Chem. Eng. Sci., Vol.66 (4), pp. 689-702 (2011).
    Adánez, J., A. Cuadrat, A. Abad, P. Gayán, L. F. de Diego and F. García-Labiano, "Ilmenite Activation During Consecutive Redox Cycles in Chemical-Looping Combustion," Energy Fuels, Vol. 24 (2), pp. 1402-1413 (2010).
    Adánez, J., L. F. de Diego, F. García-Labiano, P. Gayán, A. Abad and J. M. Palacios, "Selection of Oxygen Carriers for Chemical-Looping Combustion," Energy Fuels, Vol. 18 (2), pp. 371-377 (2004).
    Andreozzi, G. B., F. Cellucci and D. Gozzi. "High-Temperature Electrical Conductivity of FeTiO3 and Ilmenite," J. Mater. Chem., Vol. 6 (6), pp. 987-997 (1996).
    Azis, M. M., E. Jerndal, H. Leion, T. Mattisson and A. Lyngfelt, "On the Evaluation of Synthetic and Natural Ilmenite Using Syngas as Fuel in Chemical-Looping Combustion (CLC)," Chem. Eng. Res. Des., Vol. 88 (11), pp. 1505-1514 (2010).
    Borowiec, K. and T. Rosenqvist, "Phase Relations and Oxidation Studies in the System Fe-Fe2O3-TiO2 at 700-1100 oC," Scand. J. Metall., Vol. 10, pp. 217-224 (1981).
    Briggs, R. A. and A. Sacco, "The Oxidation of Ilmenite and Its Relationship to the FeO-Fe2O3-TiO2 Phase Diagram at 1073 and 1140 K," Metall. Trans. A, Vol. 24 (6), pp. 1257-1264 (1993).
    Brown, T. J., T. Bide, A. S. Walters, N. E. Idoine, R. A. Shaw, S. D. Hannis, P. A. J. Lusty and R. Kendall, "World Mineral Production," Nottingham: British Geological Survey (2011).
    Cao, Y., B. Casenas and W. P. Pan, "Investigation of Chemical Looping Combustion by Solid Fuels. 2. Redox Reaction Kinetics and Product Characterization with Coal, Biomass, and Solid Waste as Solid Fuels and CuO as an Oxygen Carrier," Energy Fuels, Vol. 20 (5), pp. 1845-1854 (2006).
    Chen, X., J. X. Deng, R. B. Yu, J. Chen, P. H. Hu and X. R. Xing, "A Simple Oxidation Route to Prepare Pseudobrookite from Panzhihua Raw Ilmenite," J. Am. Ceram. Soc., Vol. 93 (10), pp. 2968-2971 (2010).
    Chen, Y., "Low-Temperature Oxidation of Ilmenite (FeTiO3) Induced by High Energy Ball Milling at Room Temperature," J. Alloys Compd., Vol. 257 (1-2), pp. 156-160 (1997).
    de Diego, L. F., F. García-Labiano, J. Adánez, P. Gayán, A. Abad, B. M. Corbella and J. M. Palacios, "Development of Cu-Based Oxygen Carriers for Chemical-Looping Combustion," Fuel, Vol. 83 (13), pp. 1749-1757 (2004).
    de Diego, L. F., F. García-Labiano, P. Gayán, J. Celaya, J. M. Palacios and J. Adánez, "Operation of a 10 Kwth Chemical-Looping Combustor During 200 h with a CuO-Al2O3 Oxygen Carrier," Fuel, Vol. 86 (7-8), pp. 1036-1045 (2007).
    Dondi, M., F. Matteucci, G. Cruciani, G. Gasparotto and D. M. Tobaldi, "Pseudobrookite Ceramic Pigments: Crystal Structural, Optical and Technological Properties," Solid State Sci., Vol. 9 (5), pp. 362-369 (2007).
    Drofenik, M., L. Golic, D. Hanzel, V. Krasevec, A. Prodan, M. Bakker and D. Kolar, "A New Monoclinic Phase in the Fe2O3-TiO2 System. I. Structure Determination and Mössbauer Spectroscopy," J. Solid State Chem., Vol. 40 (1), pp. 47-51 (1981).
    Erri, P. and A. Varma, "Spinel-Supported Oxygen Carriers for Inherent CO2 Separation During Power Generation," Ind. Eng. Chem. Res., Vol. 46 (25), pp. 8597-8601 (2007).
    Fan, L.S., "Chemical Looping Systems for Fossil Energy Conversions," New York: John Wiley & Sons, Inc. (2010).
    Fan, L. S. and F. X. Li, " Chemical Looping Technology and Its Fossil Energy Conversion Applications, " Ind. Eng. Chem. Res., Vol. 49 (21), pp. 10200-10211 (2010).
    Figueroa, J.D., T. Fout, S. Plasynski, H. McIlvried and R. D. Srivastava, "Advances in CO2 Capture Technology-The U.S. Department of Energy's Carbon Sequestration Program," Int. J. Greenhouse Gas Control, Vol. 2 (1), pp. 9-20 (2008).
    Gao, B., Y. J. Kim, A. K. Chakraborty and W. I. Lee, "Efficient Decomposition of Organic Compounds with FeTiO3/TiO2 Heterojunction under Visible Light Irradiation," Appl. Catal. B: Environ., Vol. 83 (3-4), pp. 202-207 (2008).
    Gao, Z. P., L. H. Shen, J. Xiao, M. Zheng and J. H.Wu, "Analysis of Reactivity of Fe-Based Oxygen Carrier with Coal during Chemical-Looping Combustion," J. Fuel Chem. Technol., Vol. 37 (5), pp. 513-520 (2009).
    Gennari, F. C., J. J. Andrade Gamboa and D. M. Pasquevich, " Formation of Pseudobrookite through Gaseous Chlorides and by Solid-State Reaction, " J. Mater. Sci., Vol. 33 (6), pp. 1563-1569 (1998).
    Goldstein, J., D. E. Newbury, D. C. Joy, C. E. Lyman, , P. Echlin, E. Lifshin, L. Sawyer and J. R. Michael, "Scanning Electron Microscopy and X-Ray Microanalysis," 3rd Ed., New York: Kluwer Academic Pub. (2003).
    Gupta, P., L. G. Velazquez-Vargas and L. S. Fan, "Syngas Redox (SGR) Process to Produce Hydrogen from Coal Derived Syngas," Energy Fuels, Vol. 21 (5), pp. 2900-2908 (2007).
    Gupta, S. K., V. Rajakumar and P. Grieveson, "Phase Transformations During Heating of Ilmenite Concentrates," Metall. Trans. B, Vol. 22 (5), pp. 711-716 (1991).
    Hossain, M. M. and H. I. de Lasa. "Chemical-Looping Combustion (CLC) for Inherent CO2 Separations-a Review." Chem. Eng. Sci., Vol. 63 (18), pp. 4433-4451 (2008).
    Ishida, M., M. Yamamoto and T. Ohba, "Experimental Results of Chemical-Looping Combustion with NiO/NiAl2O4 Particle Circulation at 1200 oC," Energy Convers. Manage., Vol. 43 (9-12), pp. 1469-1478 (2002).
    Ishida, M., D. Zheng and T. Akehata, "Evaluation of a Chemical-Looping-Combustion Power-Generation System by Graphic Exergy Analysis," Energy, Vol. 12 (2), pp. 147-154 (1987).
    Jin, H. and M. Ishida, "A New Type of Coal Gas Fueled Chemical-Looping Combustion," Fuel, Vol. 83 (17-18), pp. 2411-2417 (2004).
    Jin, H., T. Okamoto and M. Ishida, "Development of a Novel Chemical-Looping Combustion: Synthesis of a Looping Material with a Double Metal Oxide of CoO-NiO," Energy Fuels, Vol. 12 (6), pp. 1272-1277 (1998).
    Jin, H. G., H. Hong and T. Han, "Progress of Energy System with Chemical-Looping Combustion," Chin. Sci. Bull., Vol. 43 (9-12), pp. 906-919 (2009).
    Johansson, M., T. Mattisson and A. Lyngfelt, "Investigation of Mn3O4 with Stabilized ZrO2 for Chemical-Looping Combustion," Chem. Eng. Res. Des., Vol. 84 (9 A), pp. 807-818 (2006a).
    Johansson, M., T. Mattisson and A. Lyngfelt, "Use of NiO/NiAl2O4 Particles in a 10 kW Chemical-Looping Combustor," Ind. Eng. Chem. Res., Vol. 45 (17), pp. 5911-5919 (2006b).
    Karkhanavala , M. D. and A. C. Momin, " The Alteration of Ilmenite," Econ. Geol., Vol. 54 (6), pp. 1095-1102 (1959).
    Kolbitsch, P., J. Bolhar-Nordenkampf, T. Proll and H. Hofbauer, "Comparison of Two Ni-Based Oxygen Carriers for Chemical Looping Combustion of Natural Gas in 140 kW Continuous Looping Operation," Ind. Eng. Chem. Res., Vol. 48 (11), pp. 5542-5547 (2009).
    Leion, H., T. Mattisson and A. Lyngfelt, "Solid Fuels in Chemical-Looping Combustion," Int. J. Greenhouse Gas Control, Vol. 2 (2), pp. 180-193 (2008).
    Lewis, W.K. and E. R. Gilliland, "Production of Pure Carbon Dioxide.," U.S. Patent 2,665,972 (1954).
    Li, F. X., H. R. Kim, D. Sridhar, F. Wang, L. Zeng, J. Chen and L. S. Fan, "Syngas Chemical Looping Gasification Process: Oxygen Carrier Particle Selection and Performance," Energy Fuels, Vol. 23 (8), pp. 4182-4189 (2009).
    Mattisson, T., F. García-Labiano, B. Kronberger, A. Lyngfelt, J. Adánez and H. Hofbauer, "Chemical-Looping Combustion Using Syngas as Fuel," Int. J. Greenhouse Gas Control, Vol. 1 (2), pp. 158-169 (2007).
    Mattisson, T., A. Järdnäs and A. Lyngfelt, "Reactivity of Some Metal Oxides Supported on Alumina with Alternating Methane and Oxygen-Application for Chemical-Looping Combustion," Energy Fuels, Vol. 17 (3), pp. 643-651 (2003).
    Mattisson, T., H. Leion and A. Lyngfelt, "Chemical-Looping with Oxygen Uncoupling Using CuO/ZrO2 with Petroleum Coke," Fuel, Vol. 88 (4), pp. 683-690 (2009).
    Mattisson, T., A. Lyngfelt and P. Cho, "The Use of Iron Oxide as an Oxygen Carrier in Chemical-Looping Combustion of Methane with Inherent Separation of CO2," Fuel, Vol. 80 (13), pp. 1953-1962 (2001).
    Mesíková, Ž, P. Šulcová and M. Trojan, "Yellow Pigments Based on Fe2TiO5 and TiO2," J. Therm. Anal. Calorim., Vol. 83 (3), pp. 561-563 (2006).
    Phani, A. R., F. Ruggieri, M. Passacantando and S. Santucci, "Low Temperature Growth of Nanocrystalline Fe2TiO5 Perovskite Thin Films by Sol-Gel Process Assisted by Microwave Irradiation," Ceram. Int., Vol. 43 (1), pp. 205-211 (2008).
    Pröll, T., K. Mayer, J. Bolhàr-Nordenkampf, P. Kolbitsch, T. Mattisson, A. Lyngfelt, H. Hofbauer, "Natural Minerals as Oxygen Carriers for Chemical Looping Combustion in a Dual Circulating Fluidized Bed System," Energy Procedia, Vol. 1 (1) pp. 27-34 (2009).
    Przepiera, A. and M. Jabłoński, "Thermal Transformations of Titanium Slag of High Titania Content," J. Therm. Anal. Calorim., Vol. 74 (2), pp. 631-637 (2003).
    Rouessac, F. and A. Rouessac, "Chemical Analysis: Modern Instrumentation Methods and Techniques," 2nd Ed., New York: John Wiley & Sons, Inc. (2007).
    Rydén, M., M. Johansson, E. Cleverstam, A. Lyngfelt and T. Mattisson, "Ilmenite with Addition of NiO as Oxygen Carrier for Chemical-Looping Combustion," Fuel, Vol. 89 (11), pp. 3523-3533 (2010).
    Ryu, H. J., Y. C. Park, S. H. Jo and M. H. Park, "Development of Novel Two-Interconnected Fluidized Bed System," Korean J. Chem. Eng., Vol. 25 (5), pp. 1178-1183 (2008).
    Son, S. R., K. S. Go and S. D. Kim, "Thermogravimetric Analysis of Copper Oxide for Chemical-Looping Hydrogen Generation," Ind. Eng. Chem. Res., Vol. 48 (1), pp. 380-387 (2009).
    Srivastava, J. K., J. Hammann, K. Asai and K. Katsumata, "Magnetic Hysteresis Behaviour of Anisotropic Spin Glass Fe2TiO5," Phys. Lett. A, Vol. 149 (9), pp. 485-487 (1990).
    Villa, R., C. Cristiani, G. Groppi, L. Lietti, P. Forzatti, U. Cornaro and S. Rossini, "Ni Based Mixed Oxide Materials for CH4 Oxidation under Redox Cycle Conditions," J. Mol. Catal. A: Chem., Vol. 204, pp. 637-647 (2003).
    Wang, S. Z., G. X.Wang, F. Jiang, M. Luo and H. Y. Li, "Chemical Looping Combustion of Coke Oven Gas by Using Fe2O3/CuO with MgAl2O4 as Oxygen Carrier," Energy Environ. Sci., Vol. 3 (9), pp. 1353-1360 (2010).
    Zafar, Q., A. Abad, T. Mattisson, B. Gevert and M. Strand, "Reduction and Oxidation Kinetics of Mn3O4/Mg-ZrO2 Oxygen Carrier Particles for Chemical-Looping Combustion," Chem. Eng. Sci., Vol. 62 (23), pp. 6556-6567 (2007).
    Zafar, Q., T. Mattisson and B. Gevert, "Integrated Hydrogen and Power Production with CO2 Capture Using Chemical-Looping Reforming-Redox Reactivity of Particles of CuO, Mn2O3, NiO, and Fe2O3 Using SiO2 as a Support," Ind. Eng. Chem. Res., Vol. 44 (10), pp. 3485-3496 (2005).
    Zafar, Q., T. Mattisson and B. Gevert, " Redox Investigation of Some Oxides of Transition-State Metals Ni, Cu, Fe, and Mn Supported on SiO2 and MgAl2O4, " Energy Fuels, Vol. 20 (1), pp. 34-44 (2006).
    Zhang, G. and O. Ostrovski, "Effect of Preoxidation and Sintering on Properties of Ilmenite Concentrates," Int. J. Miner. Process., Vol. 64 (4), pp. 201-218 (2002).
    Zhao, H., L. Liu, B. Wang, D. Xu, L. Jiang and C. Zheng, "Sol-Gel-Derived NiO/NiAl2O4 Oxygen Carriers for Chemical-Looping Combustion by Coal Char," Energy Fuels, Vol. 22 (2), pp. 898-905 (2008).

    無法下載圖示 全文公開日期 2016/07/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE