研究生: |
Kodchakorn Vongjitpimol Kodchakorn Vongjitpimol |
---|---|
論文名稱: |
preparation of cellulose nanofiber by mechanochemical methods preparation of cellulose nanofiber by mechanochemical methods |
指導教授: |
氏原真樹
Masaki Ujihara |
口試委員: |
李振綱
Cheng-Kang Lee 鄭智嘉 Chih-Chia Cheng |
學位類別: |
碩士 Master |
系所名稱: |
應用科技學院 - 應用科技研究所 Graduate Institute of Applied Science and Technology |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 57 |
中文關鍵詞: | 本研究利用三種漂白樹漿 、和晶體轉換 |
外文關鍵詞: | cellulose nanofiber |
相關次數: | 點閱:746 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用三種漂白樹漿(bleached chemical wood pulp)方法製備纖維素奈米纖維
(Cellulose Nanofiber,CNF),首先利用高速攪拌器之機械過程,再來使用氫氧化鈉初步處理
之化學過程,最後於氫氧化鈉存在下利用超聲波處理之機械化學過程。將透過沉降測試
(sedimentation test)和掃描電子顯微鏡(scanning electron microscopy, SEM)分析纖維素奈米
纖維。經機械加工後,紙漿變成絮狀物(floc),經掃描電子顯微鏡觀察證實其具有直徑幾
十奈米之奈米纖維。化學過程中,我們分析纖維素的結晶度,在氫氧化鈉初步處理於低溫
下,觀察到其溶脹(swelling)和晶體轉換(crystalline transformation)之現象。然而,化學過
程和機械化學過程其均導致溶脹的纖維素纖維變成sum-micrometer 結構,而且,並沒有
有效提升纖維素奈米纖維。
為了比較漂白樹漿與微晶纖維素(microcrystalline cellulose)其來自棉短絨(cotton
linters)之溶脹性質,我們使用氫氧化鈉和氫氧化鈉/尿素溶液去檢查。微晶纖維素在低溫
下呈現透明膠狀,其凝膠為再生纖維素(regenerated cellulose),稱為纖維素II(cellulose II)。
經過化學測試,發現樹漿(wood pulp)和微晶纖維素的溶脹/凝膠化性質(swelling/gelation
properties)之間的差異,可能是由於它們的純度和高規則結構(higher-order structures)所造
成。
The cellulose nanofiber was prepared from a bleached chemical wood pulp by three methods i.e. I) Mechanical process using a high-speed blender, II) Chemical process using NaOH pre-treatment and III) Mechanochemical (Mechanical + Chemical) process using ultrasonication in the presence of NaOH. The characterization of nanofiber was carried out by the sedimentation test and the scanning electron microscopy (SEM). After mechanical process, the pulp became a floc, and the production of nanofibers with several tens nanometer in diameter was confirmed by the SEM observation. In the chemical process, the crystallinity of cellulose was analyzed. The swelling and the crystalline transformation were observed after the NaOH treatment at low temperature. However, the chemical process and the mechanochemical process resulted in the swelling of cellulose fibrils to the sum-micrometer structures, and did not effectively provide the cellulose nanofiber. To compare the swelling property with the bleached chemical wood pulp, the microcrystalline cellulose from cotton linters was also examined by the chemical process using NaOH and NaOH/urea aqueous solutions. The microcrystalline cellulose exhibited the transparent gel formation at low temperature. The regenerated cellulose from the gel was the cellulose II. The difference in swelling/gelation properties of the wood pulp and the microcrystalline cellulose could be due to their purity and their higher-order structures.
[1] Khalil, HPS Abdul, et al. "Production and modification of nanofibrillated cellulose using
various mechanical processes: a review." Carbohydrate polymers 99 (2014): 649-665.
[2] Lin, Ning, and Alain Dufresne. "Nanocellulose in biomedicine: Current status and future
prospect." European Polymer Journal59 (2014): 302-325.
[3] Kovalenko, Valeri I. "Crystalline cellulose: structure and hydrogen bonds." Russian
Chemical Reviews 79.3 (2010): 231.
[4] Moon, Robert J., et al. "Cellulose nanomaterials review: structure, properties and
nanocomposites." Chemical Society Reviews 40.7 (2011): 3941-3994.
[5] Salajková, Michaela. Nanocelluloses-surface modification and use in functional materials.
Diss. KTH Royal Institute of Technology, 2012.
[6] Klemm, Dieter, et al. Comprehensive cellulose chemistry. Volume 1: Fundamentals and
analytical methods. Wiley-VCH Verlag GmbH, 1998.
[7] Kargarzadeh, Hanieh, et al. "Methods for extraction of nanocellulose from various
sources." Handbook of Nanocellulose and Cellulose Nanocomposites; John Wiley & Sons/Wiley:
Hoboken, NJ, USA (2017): 1-49.
[8] Janardhnan, Sreekumar, and Mohini M. Sain. "Isolation of cellulose microfibrils–an
enzymatic approach." Bioresources 1.2 (2007): 176-188.
[9] Bhatnagar, A., and M. Sain. "Processing of cellulose nanofiber-reinforced
composites." Journal of Reinforced Plastics and Composites 24.12 (2005): 1259-1268.
41
[10] Wang, Bei, Mohini Sain, and Kristiina Oksman. "Study of structural morphology of hemp
fiber from the micro to the nanoscale." Applied Composite Materials 14.2 (2007): 89.
[11] BUAPAN, PUANGSIN. Studies on preparation and characterization of TEMPO-oxidized
cellulose nanofibrils from non-wood resources. Diss. University of Tokyo, 2013.
[12] Alvira, Petal, et al. "Pretreatment technologies for an efficient bioethanol production process
based on enzymatic hydrolysis: a review." Bioresource technology 101.13 (2010): 4851-4861.
[13] Da Costa Sousa, Leonardo, et al. "‘Cradle-to-grave’assessment of existing lignocellulose
pretreatment technologies." Current opinion in biotechnology 20.3 (2009): 339-347.
[14] Henniges, Ute, et al. "Irradiation of cellulosic pulps: understanding its impact on cellulose
oxidation." Biomacromolecules 13.12 (2012): 4171-4178.
[15] Charlesby, A. "The degradation of cellulose by ionizing radiation." Journal of Polymer
Science 15.79 (1955): 263-270.
[16] Honjo, Goro, and MASARU WATANABE. "Examination of cellulose fibre by the lowtemperature
specimen method of electron diffraction and electron microscopy." Nature 181.4605
(1958): 326.
[17] Wada, Masahisa, Laurent Heux, and Junji Sugiyama. "Polymorphism of cellulose I family:
reinvestigation of cellulose IVI." Biomacromolecules 5.4 (2004): 1385-1391.
[18] Langan, P., Y. Nishiyama, and H. Chanzy. "A revised structure and hydrogen-bonding
system in cellulose II from a neutron fiber diffraction analysis." Journal of the American
Chemical Society121.43 (1999): 9940-9946.
42
[19] Dinand, Elizabeth, et al. "Mercerization of primary wall cellulose and its implication for the
conversion of cellulose I→ cellulose II." Cellulose 9.1 (2002): 7-18.
[20] Borysiak, Sławomir, and Aleksandra Grzabka‐Zasadzińska. "Influence of the polymorphism
of cellulose on the formation of nanocrystals and their application in chitosan/nanocellulose
composites." Journal of Applied Polymer Science 133.3 (2016).
[21] Chen, Xiong, et al. "Effects of polymorphs on dissolution of cellulose in NaOH/urea
aqueous solution." Carbohydrate polymers 125 (2015): 85-91.
[22] Qi, Haisong, Chunyu Chang, and Lina Zhang. "Effects of temperature and molecular weight
on dissolution of cellulose in NaOH/urea aqueous solution." Cellulose 15.6 (2008): 779-787.
[23] Qi, Haisong, Chunyu Chang, and Lina Zhang. "Effects of temperature and molecular weight
on dissolution of cellulose in NaOH/urea aqueous solution." Cellulose 15.6 (2008): 779-787.
[24] Klemm, Dieter, et al. "Nanocelluloses: a new family of nature‐based
materials." Angewandte Chemie International Edition50.24 (2011): 5438-5466.
[25] Sixta, Herbert. "Pulp purification." Handbook of pulp (2006): 933-965.
[26] Park, Chan-Woo, et al. "Preparation and Properties of Holocellulose Nanofibrils with
Different Hemicellulose Content." BioResources 12.3 (2017): 6298-6308.
[27] Suzuki, Akihiro, et al. "Production of cellulose nanofibers from Aspen and Bode chopsticks
using a high temperature and high pressure steam treatment combined with
milling." Carbohydrate polymers 194 (2018): 303-310.
43
[28] Isogai, A., and R. H. Atalla. "Dissolution of cellulose in aqueous NaOH
solutions." Cellulose 5.4 (1998): 309-319.
[29] Medronho, Bruno, and Björn Lindman. "Brief overview on cellulose
dissolution/regeneration interactions and mechanisms." Advances in colloid and interface
science 222 (2015): 502-508.