簡易檢索 / 詳目顯示

研究生: 楊秀豐
Hsiu-Feng Yang
論文名稱: 自我激勵振盪噴流之火焰與流場特性
Flame and Flow Characteristics of a Self-Sustained Oscillating-Jet Burner
指導教授: 黃榮芳
Rong Fung Huang
口試委員: 蕭飛賓
Fei-Bin Hsiao
牛仰堯
Yang-Yao Niu
孫珍理
Chen-li Sun
林顯群
Sheam-Chyun Lin
趙振綱
Ching-Kong Chao
閻順昌
Shun-Chang Yen
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 123
中文關鍵詞: 自激振盪噴流燃燒器火焰行為火焰特性
外文關鍵詞: self-sustained oscillating-jet, burner, flame behavior, flame characteristics
相關次數: 點閱:185下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用自行開發之流體自激振盪器,利用實驗方法,探討自激振盪器對平面噴流火焰及鈍體分歧噴流火焰之燃燒性能的改善。藉由自激振盪器的流場調制,改變流場動量傳輸的方式,將軸向動能轉換至橫向,增強燃料的擴散特性,同時增強燃燒器尾流的紊流強度及迴流效應,使得中心燃料噴流與兩側空氣噴流能快速地混合,進而提高燃燒效率。藉由火焰拍照攝影技術、溫度量測、燃燒氣體濃度量測、火焰流場PIV量測等實驗方法,研究非預混的三種燃燒器(平面噴流、鈍體分歧噴流及自激振盪噴流)的火焰行為、溫度、濃度、燃燒當量比及火焰流場結構、速度方向、流線、速度分佈、燃燒熱釋放率等物理現象,分別予以分析與比較。任一燃燒器皆存在三種主要的特徵模態:附著火焰、過渡火焰及跳離火焰模態。附著火焰為火焰根部附著在燃燒器上。過渡火焰為火焰根部呈現不穩定的跳離與再附著於燃燒器上。跳離火焰為火焰根部跳離燃燒器。實驗結果顯示自激振盪噴流燃燒器在相同的中心燃料噴流與空氣噴流下,火焰長度最短,火焰溫度分佈中的最高火焰溫度值最大,CO2濃度分佈最寬且濃度值最大,CO與C3H8濃度分佈最窄且濃度值最小,而且最大燃燒當量比φmax最小。在火焰流場結構方面,自激振盪噴流燃燒器在火焰流場有最大的平均橫向速度、剪應力、橫向及軸向的紊流強度,顯示自激振盪噴流燃燒器在燃燒時有最大的動能傳遞,增加火焰流場的擴散、混合與捲入效應,使燃燒化學反應更完全。自激振盪噴流燃燒器的燃燒熱釋放率比鈍體分歧噴流燃燒器大1.9 ~ 2.8%,比平面噴流燃燒器大8.4 ~ 9.9%,此結果顯示自激振盪噴流燃燒器的燃燒性能為最佳。


    A self-sustained oscillating-jet burner for improving the combustion of the plane-jet burner and bifurcated-jet burner was developed and studied. The oscillation frequency, flame behavior, thermal structure, combustion-product distributions, and velocity distributions of the oscillating-jet flame were experimentally examined and compared with the non-oscillating bifurcated-jet and plane-jet flame. The flame behavior was studied with instantaneous and long-exposure photography. The temperature distributions were measured with a fine-wire thermocouple. The combustion-product concentrations were detected with a gas analyzer. The velocity distributions were measured with particle image velocimetry (PIV). Three characteristic flame modes (attached flame, transitional flame, and lifted flame) were identified in the domain of the Reynolds number of fuel jet flow and Reynolds number of co-flowing air. The results showed that the length of the oscillating-jet flame was reduced by about 6.7% and 56.6% when compared to that of the bifurcated-jet and plane-jet flames, respectively. The transverse temperature profiles of the oscillating-jet flame presented a wider spread than the bifurcated-jet and plane-jet flames did. The oscillating-jet flame’s maximum temperature was about 100 oC and 250 oC higher than that of the bifurcate-jet and plane-jet flames. The oscillating-jet flame presented a larger CO2 concentration, the smaller unburned C3H8 and CO concentrations, a larger velocity fluctuation, and larger heat release ratio when compared to the bifurcated-jet and plane-jet flames. The experimental results revealed that the combustion in the oscillating-jet flame was more complete than that in the bifurcated-jet and plane-jet flames, which displayed that the oscillating-jet burner improved the combustion of bifurcated-jet burner and plane-jet burner.

    摘 要 i Abstract ii 誌 謝 iii 目 錄 iv 符 號 索 引 vi 表 圖 索 引 viii 第一章 緒 論 1 1.1 研究動機 1 1.2 文獻回顧 3 1.3 研究目標 6 第二章 實驗方法、設備及儀器 8 2.1 實驗方法 8 2.2 實驗設備 8 2.3 實驗儀器 10 2.3.1 流量量測 10 2.3.2 流體振盪特性量測 11 2.3.3 火焰流場可視化 11 2.3.4 溫度量測 11 2.3.5 燃燒氣體濃度量測 12 2.3.6 移動機構 12 2.3.7 火焰流場之速度量測 13 2.4 重要參數的定義 18 第三章 燃燒器的速度特性及其火焰行為 20 3.1 燃燒器的速度特性 20 3.2 燃燒器的火焰行為 22 3.2.1 平面噴流燃燒器的火焰行為 22 3.2.2 鈍體分歧噴流燃燒器的火焰行為 23 3.2.3 自激振盪噴流燃燒器的火焰行為 24 3.2.4 燃燒器火焰行為的比較 26 3.3 燃燒器的火焰特徵模態與區域 27 3.4 燃燒器的火焰長度與比較 28 3.4.1 燃燒器的火焰長度 28 3.4.2 燃燒器火焰長度的比較 30 第四章 燃燒器的火焰溫度分佈 32 4.1 火焰溫度平均值與量測時間的穩定度分析 32 4.2 平面噴流燃燒器的火焰溫度分佈 32 4.3 鈍體分歧噴流燃燒器的火焰溫度分佈 33 4.4 自激振盪噴流燃燒器的火焰溫度分佈 35 4.5 燃燒器火焰溫度分佈的比較 36 第五章 燃燒器的燃燒氣體濃度分佈 39 5.1 平面噴流燃燒器的燃燒氣體濃度分佈 39 5.2 鈍體分歧噴流燃燒器的燃燒氣體濃度分佈 42 5.3 自激振盪噴流燃燒器的燃燒氣體濃度分佈 45 5.4 燃燒器燃燒氣體濃度分佈的比較 47 5.5 燃燒器燃燒當量比的分析 48 第六章 燃燒器的火焰流場分析 50 6.1 燃燒器火焰流場PIV量測的時間平均 50 6.2 平面噴流火焰流場的平均速度向量與流線圖 51 6.3 平面噴流火焰流場的速度特性分析 51 6.4 鈍體分歧噴流火焰流場的平均速度向量與流線圖 53 6.5 鈍體分歧噴流火焰流場的速度特性分析 54 6.6 自激振盪噴流火焰流場的平均速度向量與流線圖 58 6.7 自激振盪噴流火焰流場的速度特性分析 58 6.8 燃燒器火焰流場特性的比較 62 6.9 燃燒器燃燒性能的比較 63 第七章 結論與建議 65 7.1 結論 65 7.2 建議 66 參 考 文 獻 67

    [1]Huang, R. F. and Chang, K. T., “Fluidic Oscillation Influences on Vee-Shaped Bluff-Body Flow,” AIAA Journal, Vol. 43, No. 11, 2005, pp. 2319-2328.
    [2]Huang, R. F. and Chang, K. T., “Oscillation Frequency in Wake of a Vee-Gutter,” AIAA Journal of Propulsion and Power, Vol. 20, No. 5, 2004, pp. 871-878.
    [3]Huang, R. F. and Chang, K. T., “Evolution and Turbulence Properties of Self-Sustained Transversely Oscillating Flow Induced by Fluidic Oscillator,” Journal of Fluids Engineering, Vol. 129, No. 8, 2007, pp. 1038-1047.
    [4]Loretero, M. E. and Huang, R. F., “Behaviors of Flame and Flow of Swirling Wake during Fuel Jet Oscillation due to Acoustic Excitations,” Journal of Mechanics, Vol. 26, No. 3, 2010, pp. 279-286.
    [5]Loretero, M. E. and Huang, R. F., “Effects of Acoustic Excitation on a Swirling Diffusion Flame,” Journal of Engineering for Gas Turbines and Power, Vol. 132, 2010, pp. 1-9.
    [6]Huerre, P. and Monkewitz, P. A., “Absolute and Convective Instabilities in Free Shear Layers,” Journal of Fluid Mechanics, Vol. 159, 1985, pp. 151-168.
    [7]Gad-el-Hak, M., Pollard, A., and Bonnet, J.-P., Flow Control: Fundamentals and Practices, Lecture Notes in Physics, Springer-Verlag, Berlin, 1998, pp. 335-429.
    [8]Sato, H., “The Stability and Transition of a Two-Dimensional Jet,” Journal of Fluid Mechanics, Vol. 7, 1960, pp. 53-80.
    [9]Thomas, F. O. and Goldschmidt, V. W., “Structural Characteristics of a Developing Turbulent Plane Jet,” Journal of Fluid Mechanics, Vol. 163, 1986, pp. 227-256.
    [10]Quinn, W. R., “Turbulent Free Jet Flows Issuing from Sharp-Edged Rectangular Slots: The Influence of Slot Aspect Ratio,” Experimental Thermal and Fluid Science, Vol. 5, No. 2, 1992, pp. 203-215.
    [11]Deo, R. C., Mi, J., and Nathan, G. J., “The Influence of Nozzle Aspect Ratio on Plane Jets,” Experimental Thermal and Fluid Science, Vol. 31, 2007, pp. 825-838.
    [12]Hsiao, F. -B., Lim, Y. -C., and Huang, J. -M., “On the Near-Field Flow Structure and Mode Behaviors for the Right-Angle and Sharp-Edged Orifice Plane Jet,” Experimental Thermal and Fluid Science, Vol. 34, 2010, pp. 1282-1289.
    [13]King, R., “A Review of Vortex Shedding Research and Its Application,” Ocean Engineering, Vol. 4, No. 3, 1977, pp. 141-171.
    [14]Griffin, O. M., “Universal Similarity in the Wakes of Stationary and Vibrating Bluff Structures,” Journal of Fluids Engineering, Vol. 103, No. 1, 1981, pp. 52-58.
    [15]Griffin, O. M., “Vortex Shedding from Bluff Bodies in a Shear Flow: a Rreview,” Journal of Fluids Engineering, Vol. 107, No. 3, 1985, pp. 298-306.
    [16]Motallebi, F. and Norbury, J. F., “The Effect of Base Bleed on Vortex Shedding and Base Pressure in Compressible Flow,” Journal of Fluid Mechanics, Vol. 110, 1981, pp. 273-292.
    [17]Wong, H. Y., “Wake Flow Stabilization by the Action of Base Bleed,” Journal of Fluids Engineering, Vol. 107, 1985, pp. 378-384.
    [18]Sarpkaya, T., “An Inviscid Model of Two Dimensional Vortex Shedding for Transient and Asymptotically Steady Separated Flow over an Inclined Plate,” Journal of Fluids Mechanics, Vol. 68, 1975, pp. 109-128.
    [19]Fujii, S., Gomi, M., and Eguchi, K., “Cold Flow Tests of a Bluff-Body Flame Stabilizer,” Journal of Fluids Engineering, Vol. 100, No. 3, 1978, pp. 323-332.
    [20]Yang, J. T., Tsai, G. L., and Wang, W. B., “Near-Wake Characteristics of Various V-Shaped Bluff-Body,” Journal of Propulsion and Power, Vol. 10, No. 1, 1994, pp. 288-294.
    [21]Hertzberg, J. R., Shepherd, I. G., and Talbot, L., “Vortex Shedding behind Rod Stabilized Flames,” Combustion and Flame, Vol. 86, No. 1, 1991, pp. 1-11.
    [22]Roquemore, W. M., Tankin, R. S., Chiu, H. H., and Lottes, S. A., “A Study of a Bluff-Body Combustor Using Laser Sheet Lighting,” Experiments in Fluids, Vol. 4, No. 4, 1986, pp. 205-213.
    [23]Fujii, S. and Eguchi, K., “A Comparison of Cold and Reacting Flows around a Bluff-Body Flame Stabilizer,” Journal of Fluids Engineering, Vol. 103, No. 2, 1981, pp. 328-334.
    [24]Stwalley, R. M. and Lefebvre, A. H., “Flame Stabilization Using Large Flameholders of Irregular Shape,” Journal of Propulsion and Power, Vol. 4, No. 1, 1988, pp. 4-13.
    [25]Yang, J. T., Yen, C. W., and Tsai, G. L., “Flame Stabilization in the Wake Flow behind a Slit V-Gutter,” Combustion and Flame, Vol. 99, No. 2, 1994, pp. 288-294.
    [26]Huang, R. F. and Yen, S. C., “Aerodynamic Characteristics and Thermal Structure of Nonpremixed Reacting Swirling Wakes at Low Reynolds Numbers,” Combustion and Flame, Vol. 155, No. 4, 2008, pp. 539-556.
    [27]Coanda, H. M., “Device for Deflecting a Stream of Elastic Fluid Projected into an Elastic Fluid,” United States Patent, No. 2052869, 1936.
    [28]Newman, B. G., “The Deflection of Plane Jets by Adjacent Boundaries – Coanda Effect,” in Boundary Layer and Flow Control – Its Principles and Application, Vol. 1, Ed. Lachmann, G. V., Pergamon Press, New York, 1961, pp. 232-264.
    [29]Tritton, D. J., Physical Fluid Dynamics, Second Edition, Oxford University Press, New York, 1988, pp. 150-152.
    [30]Tippetts, J. R., Ng, H. K., and Royle, J. K., “An Oscillating Bi-Stable Fluid Amplifier for Use as a Flowmeter,” Journal of Fluid Control (Fluidics Quarterly), Vol. 5, 1973, pp. 28-42.
    [31]Yamasaki, H. and Honda, S., “A Unified Approach to Hydrodynamic Oscillator Type Flowmeters,” Journal of Fluid Control, Vol. 13, 1981, pp. 1-17.
    [32]Wang, H., Beck, S. B. M., Priestman, G. H., and Boucher, R. F., “A Remote Measuring Flow Meter for Petroleum and Other Industrial Applications,” Measurement Science and Technology, Vol. 9, 1998, pp. 779-789.
    [33]Yamamoto, K, Hiroki, F., and Huodo, K., “Self-Sustained Oscillation Phenomena of Fluidic Flowmeters,” Journal of the Visualization, Vol. 1, 1999, pp. 387-396.
    [34]Lalanne, L., Le Guer, Y., and Creff, R., “Dynamics of a Bifurcating Flow within an Open Heated Cavity,” International Journal of Thermal Sciences, Vol. 40, 2001, pp. 1 - 10.
    [35]Warren, R. W., “Negative Feedback Oscillator,” United States Patent, No. 3158166, 1964.
    [36]Okabayashi, M. and Haruta, M., “Fluidic Flowmeter,” United States Patent, No. 4610162, 1986.
    [37]Ringwall, C. G., “Fluidic Flow and Velocity Sensor,” United States Patent, No. 4107990, 1978.
    [38]Challandes, C., “Fluidic Flowmeter,” United States Patent, No. 4976155, 1990.
    [39]Lin, C. K., Hsiao, F. B., and Sheu, S. S., “Flapping Motion of an Impinging Jet on a V-Shaped Plate,” Journal of Aircraft, Vol. 30, No. 3, 1993, pp. 320-325.
    [40]Camci, C. and Herr, F., “Forced Convection Heat Transfer Using a Self-Oscillating Impinging Planar Jet,” Journal of Heat Transfer, ASME Transactions, Vol. 120, No. 4, 2002, pp. 770-782.
    [41]Adrain, R. J., “Particle-Jmaging Techniques for Experimential Fluid Mechanics”, Annual Review of Fluid Mechanics, Vol. 23, 1991, pp. 261-304.
    [42]Adrian, R. J., “Twenty Years of Particle Image Velocimetry”, Experiments in Fluids, Vol. 39, 2005, pp. 159-169.
    [43]Flagan, R. C. and Seinfeld, J. H., Fundamentals of Air Pollution Engineering, Prentice Hall, Englewood Cliffs, NJ, 1988, pp. 295-307.
    [44]Hinds, W. C., Aerosol Technology, J. Wiley, New York, 1982.
    [45]McGillem, C. D. and Cooper, G. R., Continuous and Discrete Signal and System Analysis, 2nd edition, Holt, Rinehart and Winston, New York, 1984.
    [46]Huang, R. F. and Wu, J. S., “Effects of Cylinder Wake on Separated Boundary Layer and Vortex Shedding of a Wing,” AIAA Journal, Vol. 45, No. 1, 2007, pp. 247-256.
    [47]Mungal, M. G., Karasso, P. S., and Lozano, A., “The Visible Structure of Turbulent Jet Diffusion Flames: Large-Scale Organization and Flame Tip Oscillations,” Combustion Science and Technology, Vol. 76, 1991, pp. 165-185.
    [48]Sunderland, P. B., Haylett, J. E., Urban, D. L., and Nayagam, V., “Lengths of Laminar Jet Diffusion Flames under Elevated Gravity,” Combustion and Flame, Vol. 152, No. 1-2, 2008, pp. 60-68.
    [49]Turns, S. R., An Introduction to Combustion: Concept and Application, 2nd edition, McGraw-Hill, Boston, 2000.
    [50]Cengel, Y. A. and Boles, M. A., Thermodynamics:An Engineering Approach, 7th edition, McGraw-Hill, 2011, pp. 911.

    無法下載圖示 全文公開日期 2018/07/25 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE