研究生: |
陳浩評 Hau-Ping Chen |
---|---|
論文名稱: |
免除柱內橫隔板組裝式梁柱接頭 Prefabricated Shear Fuse Beam-Tubular Column Connection without Internal Diaphragms |
指導教授: |
陳正誠
Cheng-Cheng Chen |
口試委員: |
梁宇宸
Yu-Chen Liang 蕭博謙 Po-Chien Siao 鍾俊宏 Chun-Hung Chung |
學位類別: |
碩士 Master |
系所名稱: |
工程學院 - 營建工程系 Department of Civil and Construction Engineering |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 162 |
中文關鍵詞: | 箱型柱 、組裝式梁柱接頭 、剪力消能 |
外文關鍵詞: | Box Column, Prefabricated Beam-Column Connection, Shear Fuse |
相關次數: | 點閱:601 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為降低鋼結構造價,同時降低營建人力需求,開發一個包含下述特性之新型結構系統。這些特性包含:(1)桿件在工地組裝時採用栓接而避免工地銲接;(2)工廠桿件製作時避免使用電熱熔渣銲;(3)所使用之梁柱接頭應具足夠之消能能力以利超高強度鋼材之使用。
本研究透過完成11座剪力消能連接器試體之反覆載重試驗,及針對剪力消能元件之參數完成多個系列的有限元素分析,了解剪消梁柱接頭主要剪力消能元件之力學行為。試驗結果顯示:(1)所有剪力消能連接器試體之遲滯迴圈皆飽滿,破壞模式皆為剪力消能板開裂,破壞位置於轉角處近最短斷面處,符合有限元素分析所預期;(2)剪力消能板之剪力強度會受彎矩-剪力互制效應影響,所有試體強度皆有達到彎矩-剪力互制效應計算之剪力強度;(3)剪力消能板之消能區寬長比、寬度、剪力挫屈及邊界束制條件為影響韌性之重要參數;(4)剪力消能區寬長比為影響剪力消能板等效剪力模數之重要參數,可以透過剪力消能板之等效剪力模數計算剪力消能連接器於剪消梁柱接頭中提供額外之旋轉量。
為了解剪消梁柱接頭之遲滯行為,完成2座大尺寸梁-柱子結構試體之反覆載重試驗。結果顯示:(1)兩座梁-柱子結構試體之遲滯迴圈皆飽滿。兩座試體破壞模式分別為剪力消能板熱影響區破壞及剪力消能板圓弧轉角處開裂;(2)兩座試體之塑性轉角容量分別為1.24~1.33(% rad)及2.09~2.24(% rad),皆無滿足鋼結構設計規範3%塑性轉角容量。梁翼板與剪力消能板會隨反覆加載而產生相對變形,進而影響梁柱接頭韌性發展;(3)整體彈性旋轉勁度扣除梁本身彈性旋轉勁度即為剪力消能板變形所造成之額外彈性旋轉勁度,兩座試體之整體彈性旋轉勁度分別為114.9、179.9(tf-m/%rad),額外彈性旋轉勁度分別為310.5、502.9(tf-m/%rad)。
An energy dissipation device called shear fuse device is developed to connect steel column and steel beams in building frames. With shear fuse device, the structure possesses the following characteristics: (1) No welding is required while erecting the structure on the site;(2) No electro slag welding(ESW) is required for fabricating the box columns;(3) Ultra high strength steel beam can be used for earthquake-resistant structures since the energy dissipation is provided by the device instead of the beam.
Eleven shear fuse devices under cyclic loading and finite element analysis of the device were carried out to investigate the behavior of the device. The experimental results showed that: (1) All specimens showed good hysteresis behavior. For all specimens, cracks stated at the circular corner and fractured trough the shear fuse plate, as expected. (2) The strength of the specimen is affected by the moment vs. shear interaction, and all the specimens reached the strength calculated considering moment vs. shear interaction. (3) Ratio of width and length of dissipating energy zone, width of dissipating energy zone, shear buckling, and boundary condition are main parameters of ductility;(4) Ratio of width and length of dissipating energy zone is the main parameter that influences effective shear modulus of shear fuse plate, with the calculated effective shear modulus could calculate the extra rotational stiffness in shear fuse beam-column connection.
Two large scale beam-column subassembly were tested under cyclic loading. The experimental results showed that: (1) All specimens showed good hysteresis behavior. The fracture of two specimen are heat affected zone of shear fuse plate cracked and circular corner of shear fuse plate cracked, respectively;(2) The plastic rotation of two specimen are 1.24~1.33(% rad) and 2.09~2.24(% rad), respectively. Both of two specimens do not satisfied the requested 3% plastic rotation by code of design of steel structure. The reason why the capability of plastic rotated deformation was not good as expectation was speculated about following behavior. Beam flange and shear fuse plate will have relative displacements. This kind of behavior will cause the stress of shear fuse plate concentrated at the side near beam web, decreased the ductility of shear fuse plate;(3) The total elastic rotational stiffness minus the elastic rotational stiffness of beam equals extra elastic rotational stiffness due to shear fuse plate deformation. The total elastic rotational stiffness of two specimens are 114.9、179.9(tf-m/%rad);The extra elastic rotational stiffness of two specimens are 310.5、502.9(tf-m/%rad).
[1] America Institute of Steel Construction, (2016), “Seismic Provisions of Structural Steel Buildings (AISC 341-16 ed.),” America Institute of Steel Construction.
[2] Horne, M. R., (1951), “The plastic theory of bending of mild steel beams with particular reference to the effect of shear force,” Proceeding of the Royal Society A 207 216.
[3] Neal, B. G., (1977), “The Plastic Methods of Structural Analysis,” 台北市,鼎力圖書。
[4] Paul W. Richards, (2019), “Cyclic Behavior of Replaceable Shear Fuse Connections for Steel Moment Frames,” Journal of Structure Engineering 145(12) 04019156.
[5] Paul W. Richards, (2021), Cyclic hardening factor for replaceable shear fuse connections, Journal of Constructional Steel Research 185 106838.
[6] Rudy Tiara(程傳立),(2016),含封板之H型鋼梁在反覆載重下之側向扭轉挫曲行為,國立台灣科技大學碩士論文。
[7] 中華民國內政部營建署,(2010),鋼結構極限設計法規範及解說,中華民國內政部營建署工程設計相關規範。
[8] 中華民國經濟部標準檢驗局,(1996),中華民國國家標準-金屬材料拉伸試驗法(CNS 2111),中華民國國家標準。
[9] 中華民國經濟部標準檢驗局,(2005),中華民國國家標準-金屬材料拉伸試驗試片(CNS 2112),中華民國國家標準。
[10] 葉泓毅,(2021),自束制H型鋼梁工法於實際工程案例之應用,國立台灣科技大學碩士論文。
[11] 廖俊宏,(2019),SMRF中梁高應力區各種組合銲道型式之可行性,國立台灣科技大學碩士論文。