研究生: |
蔡宇軒 Yu-hsuan Tsai |
---|---|
論文名稱: |
疊紋式晶圓翹曲量測技術之開發 Development of wafer warpage measurement technique using Moire method |
指導教授: |
謝宏麟
Hung-lin Hsieh |
口試委員: |
李朱育
Ju-yi Lee 鄧昭瑞 Geo-ry Tang |
學位類別: |
碩士 Master |
系所名稱: |
工程學院 - 機械工程系 Department of Mechanical Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 80 |
中文關鍵詞: | 疊紋 、翹曲 、傾斜角度 |
外文關鍵詞: | moire, warpage, tilt angle |
相關次數: | 點閱:842 下載:16 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文提出一套利用疊紋法量測藍寶石晶圓翹曲量的偵測技術,其系統架構簡單且架設容易。此系統由一發光二極管光源(LED)、一線性光柵片、一電荷耦合元件(CCD) 攝影機及數個光學元件所組成。藉由疊紋法的技巧,將光柵影像投射至待測物藍寶石基板後,再反射回CCD攝影機後形成量測光柵影像,經由與數位(虛擬)參考光柵影像交疊即可產生相對應的疊紋條紋。此疊紋條紋的週期可藉由控制兩光柵間之夾角或透鏡焦距來調整。當待測晶圓發生翹曲時,疊紋條紋相位將隨之產生變化,透過量測晶圓表面各徑向量測點之相位變化量來取得各點之傾斜角度變化量,而後推得相對應之晶圓翹曲值。由實驗結果證明本量測技術可精準地量測藍寶石晶圓之翹曲量,其角度解析度可達0.4 μrad,於光束直徑1吋及每步橫移1 mm的量測條件下,其最小可量得之相對翹曲值約為0.4 nm。
A non-contact warpage measurement technique by using the Moire effect method is proposed in this study. The technique is simple and easy to set up. It consists of a light source, a linear grating, a Charge-coupled Device (CCD) camera, a beam-splitter, and a focusing lens. The image of a linear grating is projected onto a wafer surface and then reflected into the CCD camera to obtain the image of the measurement grating. By overlapping the images of the measuring grating and the reference grating (physical or digital), a corresponding Moire fringe is formed. When wafer warpage occurs, the phase of the Moire fringe will be changed proportionally. The wafer warpage can be obtained by analyzing the phase shift of the Moire fringes in according detection region. The measurement resolution can be controlled by changing the pitch size of the grating or focal length of the focusing lens, or adjusting the angle between the images of measuring and reference gratings. The experimental results demonstrate that the angle resolution of our proposed method can achieve 0.4 μrad. The minimum warpage quantity can be measured is about 0.4 nm under the condition of the 1 inch measuring beam size and 1 mm measuring distance per step.
[1]. E. Klokholm, “An apparatus for measuring stress in thin films,” Rev. Sci. Instrum. 40, pp.1054-1058, 1969.
[2]. R. W. Hoffman and E. C. Crittenden, “Determination of stress in evaporated metal films,” Phys. Rev. 78, pp.349-350, 1950.
[3]. A. E. Ennos, “Stress developed in optical film coatings,” Appl. Opt. 5, pp.51-61, 1966.
[4]. M. M. Moslehi, “Warpage and slip dislocation lines measurements in semiconductor processing,” EP0641992 B1, 2000.
[5]. J. Schwider et al., “Twyman-Green interferometer for testing microspheres,” Opt. Eng. 34, pp.2972-2975, 1995.
[6]. 田春林,光學薄膜應力與熱膨脹係數量測之研究,國立中央大學光電科學研究所,博士論文,2000。
[7]. A. K. Sinha, H. J. Levistein, and T. E. Smith, “Thermal stresses and cracking resistance of dielectric films on Si Substrates,” J. Appl. Phys. 49, pp.2423-2426, 1978.
[8]. T. Aoki, Y. Nishikawa and S. Kato, “An improved Optical lever technique for measuring film stress,” Jpn. J. Appl. Phys. 28, pp.299-300, 1989.
[9]. J. H. Tsaia, M. Y. Fub and C. F. Yangc, “The improvement of the measuring level of the surface curvature based on the spot-radius of a collimated Gaussian laser beam,” Opt. Laser. Technol. 39, pp.1551-1554, 2007.
[10]. Laytec Information Note, “Wafer Curvature Measurements for Real-time Optical Control of Epitaxial Growth,” 2010.
[11]. R. Weller and B. M. Shepard, “Displacement Measurements by Mechanical Interferometry,” Proc. SESA 6, pp.35-38, 1948.
[12]. F. P. Chiang and C. C. Kin, “Some Optical Techniques Of Displacement And Strain Measurements On Metal Surfaces,” Jom-J. Min. Met. Mat. S. 35, pp.49-53, 1983.
[13]. S. Wu et al., “Wafer surface measurements using shadow moire with Talbot effect,” ASME 6, pp.369-376, 1997.
[14]. Y. Y. Wang and P. Hassell, “Measurement of thermally induced warpage of bga packages/substrates using phase-stepping shadow Moire,” Electronic Packaging Technology Conference, Proceedings of the 1997 1st, pp. 283-288, 1997.
[15]. C. S. Ng et al., “Stress Measurement of thin wafer using Reflection Grating Method,” Phys. Procedia. 19, pp.9-20, 2011.
[16]. D. M. Meadows et al., “Generation of Surface Contours by Moire Patterns,” Appl. Opt. 9, pp.942-947, 1970.
[17]. S. Umemoto et al., “Concrete surface strain measurement using Moire fringes,” Constr. Build. Mater. 13 January 2014
[18]. Y. L. Lay et al., “3D face recognition by shadow moire, ” Opt. Laser. Technol. 44, pp.148-152, 2012.
[19]. S. Trivedi, J. Dhanotia and S. Prakash, “Measurement of focal length using phase shifted moire deflectometry,” Opt. Laser. Eng. 51, pp.776-782, 2013.
[20]. W. Y. Chang et al., “Heterodyne moire interferometry for measuring corneal surface profile,” Opt. Laser. Eng. 54, pp.232-235, 2014.
[21]. 潘同宣,「疊紋式自動準直儀系統」,國立中央大學,碩士論文,2013。
[22]. A. E. Ennos and M. S. Virdee, “High accuracy profile measurement of quasi-conical mirror surfaces by laser autocollimation,” Prec. Eng. 4, pp.5-8, 1982.
[23]. P. S. Huang and X. R. Xu, “Design of an optical probe for surface profile measurement,” Opt. Eng. 38, pp.1223–1228, 1999.
[24]. W. Gao et al., “A compact and sensitive two dimensional angle probe for flatness measurement of large silicon wafers,” Precis. Eng. 26, pp.396-404, 2002.
[25]. K. Creath and J. C. Wyant , “Moire and Fringe Projection Techniques,” Optical Shop Testing, Second Edition, pp.653-685, 1992.
[26]. W. R. J. Funnell, “Image processing applied to the interactive analysis of interferometric fringes,” Appl. Opt. 20, pp.3245-3250, 1981.
[27]. B. Wang et al., “Moire deflectometry based on Fourier-transform analysis,” Measurement 25, pp.249-253, 1999.
[28]. M. A. El-Morsy et al., “A subfringe integration method for multiple-beam Fizeau fringe analysis,” Opt. Laser. Technol. 35, pp. 223-232, 2003.
[29]. M. Wang et al., “Subfringe integration method for automatic analysis of moire deflection tomography,” Opt. Eng. 39, pp. 2726-2732, 2000.