簡易檢索 / 詳目顯示

研究生: 蔡宇軒
Yu-hsuan Tsai
論文名稱: 疊紋式晶圓翹曲量測技術之開發
Development of wafer warpage measurement technique using Moire method
指導教授: 謝宏麟
Hung-lin Hsieh
口試委員: 李朱育
Ju-yi Lee
鄧昭瑞
Geo-ry Tang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 80
中文關鍵詞: 疊紋翹曲傾斜角度
外文關鍵詞: moire, warpage, tilt angle
相關次數: 點閱:842下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文提出一套利用疊紋法量測藍寶石晶圓翹曲量的偵測技術,其系統架構簡單且架設容易。此系統由一發光二極管光源(LED)、一線性光柵片、一電荷耦合元件(CCD) 攝影機及數個光學元件所組成。藉由疊紋法的技巧,將光柵影像投射至待測物藍寶石基板後,再反射回CCD攝影機後形成量測光柵影像,經由與數位(虛擬)參考光柵影像交疊即可產生相對應的疊紋條紋。此疊紋條紋的週期可藉由控制兩光柵間之夾角或透鏡焦距來調整。當待測晶圓發生翹曲時,疊紋條紋相位將隨之產生變化,透過量測晶圓表面各徑向量測點之相位變化量來取得各點之傾斜角度變化量,而後推得相對應之晶圓翹曲值。由實驗結果證明本量測技術可精準地量測藍寶石晶圓之翹曲量,其角度解析度可達0.4 μrad,於光束直徑1吋及每步橫移1 mm的量測條件下,其最小可量得之相對翹曲值約為0.4 nm。


A non-contact warpage measurement technique by using the Moire effect method is proposed in this study. The technique is simple and easy to set up. It consists of a light source, a linear grating, a Charge-coupled Device (CCD) camera, a beam-splitter, and a focusing lens. The image of a linear grating is projected onto a wafer surface and then reflected into the CCD camera to obtain the image of the measurement grating. By overlapping the images of the measuring grating and the reference grating (physical or digital), a corresponding Moire fringe is formed. When wafer warpage occurs, the phase of the Moire fringe will be changed proportionally. The wafer warpage can be obtained by analyzing the phase shift of the Moire fringes in according detection region. The measurement resolution can be controlled by changing the pitch size of the grating or focal length of the focusing lens, or adjusting the angle between the images of measuring and reference gratings. The experimental results demonstrate that the angle resolution of our proposed method can achieve 0.4 μrad. The minimum warpage quantity can be measured is about 0.4 nm under the condition of the 1 inch measuring beam size and 1 mm measuring distance per step.

摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vi 表目錄 viii 符號說明 ix 第一章 緒論 1 1.1研究背景 1 1.2文獻回顧 2 1.2.1 光學式翹曲量測技術 2 1.2.2 疊紋相關應用之文獻回顧 8 1.2.3 角度掃描式輪廓量測技術之文獻回顧 9 1.3研究目的 10 1.4 論文架構 11 第二章 基礎理論 12 2.1疊紋效應 12 2.1.1 疊紋條紋形態表示式 13 2.1.2 疊紋條紋橫移理論 18 2.1.3 疊紋條紋旋轉理論 19 2.1.4 疊紋條紋縮放理論 20 2.2疊紋條紋移動分析 21 2.3自動準直儀系統 24 2.4疊紋相位變化與待測平面傾斜角度關係 25 2.5掃描式角度累加量測原理 26 2.6陰影疊紋法 28 2.7小結 30 第三章 系統架構 31 3.1量測系統元件介紹 32 3.2疊紋式晶圓翹曲量測系統之量測原理 33 3.3條紋影像交疊系統 36 3.4疊紋影像位移分析系統 37 3.5掃描式逐點量測系統 39 3.6晶圓翹曲方向判別 41 3.7小結 43 第四章 實驗結果與討論 45 4.1晶圓傾斜角度量測實驗 45 4.1.1 傾斜角度量測實驗之架構 45 4.1.2 傾斜角度量測實驗之結果 46 4.2晶圓翹曲量測實驗 51 4.2.1 晶圓翹曲量測實驗之架構 51 4.2.2 晶圓翹曲量測實驗之結果 51 4.3量測系統性能測試與討論 54 4.3.1 傾斜角度量測極限 54 4.3.2 速度量測極限 55 4.3.3 不同橫移距離之晶圓翹曲量測 55 4.3.4 不同頂點之晶圓翹曲量測 57 4.3.5 不同疊紋範圍之翹曲量測 57 4.3.6 重複性量測 60 4.3.7 穩定度量測 61 第五章 誤差分析 63 5.1疊紋夾角對量測結果之影響 63 5.1.1 小疊紋夾角偏移量測結果 64 5.1.2 大疊紋夾角偏移量測結果 65 5.2選取範圍偏移中心對量測結果之影響 67 5.3橫移距離誤差 69 5.4透鏡傾斜誤差 70 5.5 CCD曝光時間對量測結果之影響 71 第六章 結論與未來展望 74 6.1結論 74 6.2未來展望 75 參考文獻 76 附件 79

[1]. E. Klokholm, “An apparatus for measuring stress in thin films,” Rev. Sci. Instrum. 40, pp.1054-1058, 1969.
[2]. R. W. Hoffman and E. C. Crittenden, “Determination of stress in evaporated metal films,” Phys. Rev. 78, pp.349-350, 1950.
[3]. A. E. Ennos, “Stress developed in optical film coatings,” Appl. Opt. 5, pp.51-61, 1966.
[4]. M. M. Moslehi, “Warpage and slip dislocation lines measurements in semiconductor processing,” EP0641992 B1, 2000.
[5]. J. Schwider et al., “Twyman-Green interferometer for testing microspheres,” Opt. Eng. 34, pp.2972-2975, 1995.
[6]. 田春林,光學薄膜應力與熱膨脹係數量測之研究,國立中央大學光電科學研究所,博士論文,2000。
[7]. A. K. Sinha, H. J. Levistein, and T. E. Smith, “Thermal stresses and cracking resistance of dielectric films on Si Substrates,” J. Appl. Phys. 49, pp.2423-2426, 1978.
[8]. T. Aoki, Y. Nishikawa and S. Kato, “An improved Optical lever technique for measuring film stress,” Jpn. J. Appl. Phys. 28, pp.299-300, 1989.
[9]. J. H. Tsaia, M. Y. Fub and C. F. Yangc, “The improvement of the measuring level of the surface curvature based on the spot-radius of a collimated Gaussian laser beam,” Opt. Laser. Technol. 39, pp.1551-1554, 2007.
[10]. Laytec Information Note, “Wafer Curvature Measurements for Real-time Optical Control of Epitaxial Growth,” 2010.
[11]. R. Weller and B. M. Shepard, “Displacement Measurements by Mechanical Interferometry,” Proc. SESA 6, pp.35-38, 1948.
[12]. F. P. Chiang and C. C. Kin, “Some Optical Techniques Of Displacement And Strain Measurements On Metal Surfaces,” Jom-J. Min. Met. Mat. S. 35, pp.49-53, 1983.
[13]. S. Wu et al., “Wafer surface measurements using shadow moire with Talbot effect,” ASME 6, pp.369-376, 1997.
[14]. Y. Y. Wang and P. Hassell, “Measurement of thermally induced warpage of bga packages/substrates using phase-stepping shadow Moire,” Electronic Packaging Technology Conference, Proceedings of the 1997 1st, pp. 283-288, 1997.
[15]. C. S. Ng et al., “Stress Measurement of thin wafer using Reflection Grating Method,” Phys. Procedia. 19, pp.9-20, 2011.
[16]. D. M. Meadows et al., “Generation of Surface Contours by Moire Patterns,” Appl. Opt. 9, pp.942-947, 1970.
[17]. S. Umemoto et al., “Concrete surface strain measurement using Moire fringes,” Constr. Build. Mater. 13 January 2014
[18]. Y. L. Lay et al., “3D face recognition by shadow moire, ” Opt. Laser. Technol. 44, pp.148-152, 2012.
[19]. S. Trivedi, J. Dhanotia and S. Prakash, “Measurement of focal length using phase shifted moire deflectometry,” Opt. Laser. Eng. 51, pp.776-782, 2013.
[20]. W. Y. Chang et al., “Heterodyne moire interferometry for measuring corneal surface profile,” Opt. Laser. Eng. 54, pp.232-235, 2014.
[21]. 潘同宣,「疊紋式自動準直儀系統」,國立中央大學,碩士論文,2013。
[22]. A. E. Ennos and M. S. Virdee, “High accuracy profile measurement of quasi-conical mirror surfaces by laser autocollimation,” Prec. Eng. 4, pp.5-8, 1982.
[23]. P. S. Huang and X. R. Xu, “Design of an optical probe for surface profile measurement,” Opt. Eng. 38, pp.1223–1228, 1999.
[24]. W. Gao et al., “A compact and sensitive two dimensional angle probe for flatness measurement of large silicon wafers,” Precis. Eng. 26, pp.396-404, 2002.
[25]. K. Creath and J. C. Wyant , “Moire and Fringe Projection Techniques,” Optical Shop Testing, Second Edition, pp.653-685, 1992.
[26]. W. R. J. Funnell, “Image processing applied to the interactive analysis of interferometric fringes,” Appl. Opt. 20, pp.3245-3250, 1981.
[27]. B. Wang et al., “Moire deflectometry based on Fourier-transform analysis,” Measurement 25, pp.249-253, 1999.
[28]. M. A. El-Morsy et al., “A subfringe integration method for multiple-beam Fizeau fringe analysis,” Opt. Laser. Technol. 35, pp. 223-232, 2003.
[29]. M. Wang et al., “Subfringe integration method for automatic analysis of moire deflection tomography,” Opt. Eng. 39, pp. 2726-2732, 2000.

QR CODE