Basic Search / Detailed Display

Thesis Title: 探索客戶在運用聯邦式學習進行資訊分享的意願
Exploring the Willingness to Adopt Federated Learning for Cross domain Information Sharing
Advisor: 張智傑
Chih-Chieh Chang
Committee: 何建韋
Chien-Wei Ho
Lo-yao Yeh
Degree: 碩士
Department: 管理學院 - 管理學院MBA
School of Management International (MBA)
Thesis Publication Year: 2023
Graduation Academic Year: 112
Language: 英文
Pages: 44
Keywords (in other languages): Federated Learning, Cross domain information sharing, UTAUT, TTF, Social Exchange Theory
Reference times: Clicks: 34Downloads: 1
School Collection Retrieve National Library Collection Retrieve Error Report

  • This empirical study explores the factors influencing the intention of working-age individuals to adopt Federated Learning (FL) for information sharing within the general industry, specifically examining the banking sector. By integrating the Unified Theory of Acceptance and Use of Technology (UTAUT), Task-Technology Fit (TTF), and Social Exchange Theory (SET) for the first time, this research investigates both the motivational and practical aspects influencing FL adoption. Analysis conducted using SmartPLS4 on data collected via a 7-point Likert scale survey reveals that “Trust” is the pivotal factor affecting user intentions, followed by social influence, effort expectancy, task-technology fit, and performance expectancy. Notably, perceived benefits substantially impact trust more than perceived costs, and technology characteristics exert a greater influence on task-technology fit than task characteristics, illustrating a privacy paradox in practice. This study fills a gap in understanding the multi-theory integration explaining FL adoption and proposes a foundational framework for implementing FL based on user-centric motivations and task-technology alignment.

    Abstract I Acknowledgments II Chapter 1 Introduction 1 1.1 Research background 1 1.2 Research purpose 6 1.3 Research structure 6 Chapter 2 Literature Review 7 2.1 Federated learning 7 2.2 Federated learning applications 8 2.2.1 Healthcare domain 8 2.2.2 Banking domain 10 2.3 Frameworks 11 2.3.1 The Unified Theory of Acceptance and Use of Technology (UTAUT) 12 2.3.2 Task-Technology Fit (TTF) 14 2.3.3 Social Exchange Theory (SET) 14 Chapter 3 Research Model and Hypothesis 18 3.1 Research model 18 3.2 Hypothesis development 19 3.2.1 TTF model 19 3.2.2 UTAUT model 20 3.2.3 SET model 22 Chapter 4 Research Methodology and Results 24 4.1 Research design and method 24 4.2 Data collection 24 4.3 Questionaire result 25 4.3.1 Descriptive analysis 25 4.3.2 Internal consistency and reliability 26 4.3.3 Discriminant validity 27 4.3.4 Hypothesis testing 28 Chapter 5 Discussions 31 5.1 Theoretical contributions 31 5.2 Theoretical implications 35 5.3 Practical implications 36 5.4 Research limitations 39 5.5 Suggestions and future directions 41 5.6 Conclusions 43 References 45 Appendix A 54 Appendix B 56 Appendix C 58

    Afshan, S., & Sharif, A. (2016). Acceptance of mobile banking framework in Pakistan. Telematics and Informatics, 33(2), 370-387.
    Ahmad, M. (2018). Review of The Technology Acceptance Model (TAM) in Internet banking and Mobile banking.
    Ahmad, R., Nawaz, M. R., Ishaq, M. I., Khan, M. M., & Ashraf, H. A. (2022). Social exchange theory: Systematic review and future directions. Front Psychol, 13, 1015921.
    Asad, M., Shaukat, S., Hu, D., Wang, Z., Javanmardi, E., Nakazato, J., & Tsukada, M. (2023). Limitations and Future Aspects of Communication Costs in Federated Learning: A Survey. Sensors (Basel), 23(17).
    Bagozzi, R. P., & Youjae, Y. (1988). On the Evaluation of Structural Equation Models. Journal of the Academy of Marketing Science, 16(1), 74-94.
    Baltruschat, L. M., Jaiman, V., & Urovi, V. (2023). User acceptability of blockchain technology for enabling electronic health record exchange. Journal of Systems and Information Technology, 25(3), 268-295.
    Banabilah, S., Aloqaily, M., Alsayed, E., Malik, N., & Jararweh, Y. (2022). Federated learning review: Fundamentals, enabling technologies, and future applications. Information Processing & Management, 59(6).
    Barth, S., & de Jong, M. D. T. (2017). The privacy paradox – Investigating discrepancies between expressed privacy concerns and actual online behavior – A systematic literature review. Telematics and Informatics, 34(7), 1038-1058.
    Blau, P. M. (1964). Exchange and Power in Social Life.
    Borgogno, O., & Colangelo, G. (2019). Data sharing and interoperability: Fostering innovation and competition through APIs. Computer Law & Security Review, 35(5).
    Brinberg, D., & Wood, R. (1983). A Resource Exchange Theory Analysis of Consumer Behavior. Journal of Consumer Research, 10(3), 330-338.
    Broby, D. (2021). Financial technology and the future of banking. Financial Innovation, 7(1).
    C. Nguyen, D., Pham, V., Pathirana, P., Ding, M., Seneviratne, A., Lin, Z., Dobre, O., & Hwang, w.-J. (2021). Federated Learning for Smart Healthcare: A Survey. ACM Computing Surveys.
    Cheng, Y., Liu, Y., Chen, T., & Yang, Q. (2020). Federated learning for privacy-preserving AI. Communications of the ACM, 63(12), 33-36.
    Crabbe, M., Standing, C., Standing, S., & Karjaluoto, H. (2009). An adoption model for mobile banking in Ghana. International Journal of Mobile Communications, 7(5).
    Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16, 297-334.
    Cropanzano, R., Anthony, E. L., Daniels, S. R., & Hall, A. V. (2017). Social Exchange Theory: A Critical Review with Theoretical Remedies. Academy of Management Annals, 11(1), 479-516.
    Cropanzano, R., & Mitchell, M. (2005). Social Exchange Theory: An Interdisciplinary Review. Journal of Management, 31, 874-900.
    Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3).
    Deloitte, W. E. F. (2019). The Next Generation of Data-Sharing in Financial Services: Using Privacy Enhancing Techniques to Unlock New Value. W. E. Forum.
    Dwivedi, Y. K., Rana, N. P., Jeyaraj, A., Clement, M., & Williams, M. D. (2017). Re-examining the Unified Theory of Acceptance and Use of Technology (UTAUT): Towards a Revised Theoretical Model. Information Systems Frontiers, 21(3), 719-734.
    Emerson, R. M. (1976). Social Exchange Theory. Annual Review of Sociology, 2, 335-362.
    European Commission, D.-G. f. C. N., Content and Technology; Everis Benelux. (2018). Study on data sharing between companies in Europe. P. O. o. t. E. Union.
    Faqih, K. M. S., & Jaradat, M.-I. R. M. (2021). Integrating TTF and UTAUT2 theories to investigate the adoption of augmented reality technology in education: Perspective from a developing country. Technology in Society, 67.
    Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50.
    Goodhue, D. L., & Thompson, R. L. (1995). Task-technology fit and individual performance. MIS Quarterly, 213-236.
    Gouldner, A. W. (1960). The Norm of Reciprocity: A Preliminary Statement. American Sociological Review, 25(2), 161-178.
    Graf-Vlachy, L., Buhtz, K., & König, A. (2018). Social influence in technology adoption: taking stock and moving forward. Management Review Quarterly, 68(1), 37-76.
    Hair, J., Hult, G. T. M., Ringle, C., & Sarstedt, M. (2016). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), 2nd edition.
    Hair, J., Sarstedt, M., Hopkins, L., & Kuppelwieser, V. (2014). Partial Least Squares Structural Equation Modeling (PLS-SEM): An Emerging Tool for Business Research. European Business Review, 26, 106-121.
    Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2-24.
    Homans, G. C. (1958). Social Behavior as Exchange. American Journal of Sociology, 63(6), 597-606.
    Hu, S., Ngo, D., Zheng, S., Smith, V., & Wu, Z. (2023). Federated Learning as a Network Effects Game.
    Im, I., Hong, S., & Kang, M. S. (2011). An international comparison of technology adoption. Information & Management, 48(1), 1-8.
    Jackson, J. D., Yi, M. Y., & Park, J. S. (2013). An empirical test of three mediation models for the relationship between personal innovativeness and user acceptance of technology. Information & Management, 50(4), 154-161.
    Jahan, N., & Kim, S. W. (2020). Understanding online community participation behavior and perceived benefits: a social exchange theory perspective. PSU Research Review, 5(2), 85-100.
    Kairouz, P., McMahan, H., Avent, B., Bellet, A., Bennis, M., Bhagoji, A., Bonawitz, K., Charles, Z., Cormode, G., Cummings, R., D'Oliveira, R., El Rouayheb, S., Evans, D., Gardner, J., Garrett, Z., Gascón, A., Ghazi, B., Gibbons, P., Gruteser, M., & Zhao, S. (2019). Advances and Open Problems in Federated Learning.
    Kanamori, S., Abe, T., Ito, T., Emura, K., Wang, L., Yamamoto, S., Phong, L. T., Abe, K., Kim, S., Nojima, R., Ozawa, S., & Moriai, S. (2022). Privacy-Preserving Federated Learning for Detecting Fraudulent Financial Transactions in Japanese Banks. Journal of Information Processing, 30(0), 789-795.
    Kapur, P. K., Singh, O., Khatri, S. K., & Verma, A. (2020). Strategic System Assurance and Business Analytics.
    Kawa, D., Punyani, S., Nayak, P., Karkera, A., & Jyotinagar, V. (2019). Credit risk assessment from combined bank records using federated learning. International Research Journal of Engineering and Technology (IRJET), 6(4), 1355-1358.
    Kronemann, B., Kizgin, H., Rana, N., & K. Dwivedi, Y. (2023). How AI encourages consumers to share their secrets? The role of anthropomorphism, personalisation, and privacy concerns and avenues for future research. Spanish Journal of Marketing - ESIC, 27(1), 3-19.
    Lee, C. M., Delgado Fernandez, J., Potenciano Menci, S., Rieger, A., & Fridgen, G. (2023). Federated Learning for Credit Risk Assessment.
    Li, Q., Diao, Y., Chen, Q., & He, B. (2021). Federated Learning on Non-IID Data Silos: An Experimental Study.
    Li, Q., Wen, Z., Wu, Z., Hu, S., Wang, N., Li, Y., Liu, X., & He, B. (2021). A Survey on Federated Learning Systems: Vision, Hype and Reality for Data Privacy and Protection. IEEE Transactions on Knowledge and Data Engineering, PP, 1-1.
    Li, X., Hess, T. J., & Valacich, J. S. (2008). Why do we trust new technology? A study of initial trust formation with organizational information systems. The Journal of Strategic Information Systems, 17(1), 39-71.
    Li, Y., & Wen, G. (2023). Research and Practice of Financial Credit Risk Management Based on Federated Learning. Engineering Letters, 31(1).
    Lippert, S. K., & Davis, M. (2006). A conceptual model integrating trust into planned change activities to enhance technology adoption behavior. Journal of Information Science, 32(5), 434-448.
    Luo, X., Li, H., Zhang, J., & Shim, J. P. (2010). Examining multi-dimensional trust and multi-faceted risk in initial acceptance of emerging technologies: An empirical study of mobile banking services. Decision Support Systems, 49(2), 222-234.
    Marcelin, I., Sun, W., Teclezion, M., & Junarsin, E. (2022). Financial inclusion and bank risk-taking: the effect of information sharing. Finance Research Letters, 50.
    Martins, C., Oliveira, T., & Popovič, A. (2014). Understanding the Internet banking adoption: A unified theory of acceptance and use of technology and perceived risk application. International Journal of Information Management, 34(1), 1-13.
    Oliveira, T., Faria, M., Thomas, M. A., & Popovič, A. (2014). Extending the understanding of mobile banking adoption: When UTAUT meets TTF and ITM. International Journal of Information Management, 34(5), 689-703.
    Parkes, A. (2013). The effect of task–individual–technology fit on user attitude and performance: An experimental investigation. Decision Support Systems, 54(2), 997-1009.
    Pinheiro, P., Sousa, C., & Toscano, C. (2022). Industrial Information Sharing 4.0. Procedia Computer Science, 204, 610-617.
    Quach, S., Thaichon, P., Martin, K. D., Weaven, S., & Palmatier, R. W. (2022). Digital technologies: tensions in privacy and data. J Acad Mark Sci, 50(6), 1299-1323.
    Rieke, N., Hancox, J., Li, W., Milletari, F., Roth, H. R., Albarqouni, S., Bakas, S., Galtier, M. N., Landman, B. A., Maier-Hein, K., Ourselin, S., Sheller, M., Summers, R. M., Trask, A., Xu, D., Baust, M., & Cardoso, M. J. (2020). The future of digital health with federated learning. NPJ Digit Med, 3, 119.
    Robey, D. (1979). User Attitudes and Management Information System Use. The Academy of Management Journal, 22(3), 527-538.
    Schilling, M. (2016). Strategic Management of Technological Innovation.
    Schmitt, N. (1996). Uses and abuses of coefficient alpha. Psychological Assessment, 8(4), 350-353.
    Shaikh, A. A., & Karjaluoto, H. (2015). Mobile banking adoption: A literature review. Telematics and Informatics, 32(1), 129-142.
    Sharma, R., Singh, G., & Sharma, S. (2020). Modelling internet banking adoption in Fiji: A developing country perspective. International Journal of Information Management, 53.
    Sheller, M. J., Edwards, B., Reina, G. A., Martin, J., Pati, S., Kotrotsou, A., Milchenko, M., Xu, W., Marcus, D., Colen, R. R., & Bakas, S. (2020). Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data. Sci Rep, 10(1), 12598.
    Shen, Y.-C., Huang, C.-Y., Chu, C.-H., & Hsu, C.-T. (2010). A benefit–cost perspective of the consumer adoption of the mobile banking system. Behaviour & Information Technology, 29(5), 497-511.
    Shingi, G. (2020). A federated learning based approach for loan defaults prediction 2020 International Conference on Data Mining Workshops (ICDMW),
    Sinaci, A. A., Gencturk, M., Alvarez-Romero, C., Laleci Erturkmen, G. B., Martinez-Garcia, A., Escalona-Cuaresma, M. J., & Parra-Calderon, C. L. (2024). Privacy-preserving federated machine learning on FAIR health data: A real-world application. Comput Struct Biotechnol J, 24, 136-145.
    Sok Foon, Y., & Chan Yin Fah, B. (2011). Internet Banking Adoption in Kuala Lumpur: An Application of UTAUT Model. International Journal of Business and Management, 6(4).
    Souiden, N., Ladhari, R., & Chaouali, W. (2020). Mobile banking adoption: a systematic review. International Journal of Bank Marketing, ahead-of-print.
    Suzumura, T., Zhou, Y., Kawahara, R., Baracaldo, N., & Ludwig, H. (2022). Federated Learning for Collaborative Financial Crimes Detection. In H. Ludwig & N. Baracaldo (Eds.), Federated Learning: A Comprehensive Overview of Methods and Applications (pp. 455-466). Springer International Publishing.
    Sydow, J., & Windeler, A. (1998). Organizing and Evaluating Interfirm Networks: a Structurationist Perspective on Network Processes and Effectiveness. Organization Science, 9, 265-284.
    Tarhini, A., El-Masri, M., Ali, M., & Serrano, A. (2016). Extending the UTAUT model to understand the customers’ acceptance and use of internet banking in Lebanon. Information Technology & People, 29(4), 830-849.
    Teo, Z. L., Jin, L., Li, S., Miao, D., Zhang, X., Ng, W. Y., Tan, T. F., Lee, D. M., Chua, K. J., Heng, J., Liu, Y., Goh, R. S. M., & Ting, D. S. W. (2024). Federated machine learning in healthcare: A systematic review on clinical applications and technical architecture. Cell Rep Med, 5(2), 101419.
    Thompson, R. L., Higgins, C. A., & Howell, J. M. (1991). Personal Computing: Toward a Conceptual Model of Utilization. MIS Quarterly, 15(1), 125-143.
    Thuan, N. H., Nguyễn, H., Pham, H., & Halibas, A. (2023). Business Innovation for the Post-pandemic Era in Vietnam.
    Vaid, A., Jaladanki, S. K., Xu, J., Teng, S., Kumar, A., Lee, S., Somani, S., Paranjpe, I., De Freitas, J. K., Wanyan, T., Johnson, K. W., Bicak, M., Klang, E., Kwon, Y. J., Costa, A., Zhao, S., Miotto, R., Charney, A. W., Bottinger, E., Fayad, Z. A., Nadkarni, G. N., Wang, F., & Glicksberg, B. S. (2021). Federated Learning of Electronic Health Records to Improve Mortality Prediction in Hospitalized Patients With COVID-19: Machine Learning Approach. JMIR Med Inform, 9(1), e24207.
    Venkatesh, Morris, Davis, & Davis. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3).
    Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Quarterly, 36(1), 157-178.
    Venkatesh, V., & Zhang, X. (2010). Unified Theory of Acceptance and Use of Technology: U.S. Vs. China. Journal of Global Information Technology Management, 13, 5-27.
    Wen, J., Zhang, Z., Lan, Y., Cui, Z., Cai, J., & Zhang, W. (2023). A survey on federated learning: challenges and applications. Int J Mach Learn Cybern, 14(2), 513-535.
    Williams, M. D., Rana, N. P., & Dwivedi, Y. K. (2015). The unified theory of acceptance and use of technology (UTAUT): a literature review. Journal of Enterprise Information Management, 28(3), 443-488.
    Yang, Q., Liu, Y., Chen, T., & Tong, Y. (2019). Federated Machine Learning: Concept and Applications.
    Yang, W., Zhang, Y., Ye, K., Li, L., & Xu, C.-Z. (2019). Ffd: A federated learning based method for credit card fraud detection. Big Data–BigData 2019: 8th International Congress, Held as Part of the Services Conference Federation, SCF 2019, San Diego, CA, USA, June 25–30, 2019, Proceedings 8,
    Yu, H., Gao, Y., & Lu, Y. (2023). Company data sharing, product innovation and competitive strategies. Expert Systems with Applications, 234.
    Yu, H., & He, X. (2021). Corporate Data Sharing, Leakage, and Supervision Mechanism Research. Sustainability, 13(2).
    Zheng, W., Yan, L., Gou, C., & Wang, F.-Y. (2021). Federated meta-learning for fraudulent credit card detection Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, Yokohama, Yokohama, Japan.
    Zhou, T., Lu, Y., & Wang, B. (2010). Integrating TTF and UTAUT to explain mobile banking user adoption. Computers in Human Behavior, 26(4), 760-767.