簡易檢索 / 詳目顯示

研究生: 張慶恩
Ching-En Chang
論文名稱: 微氣泡裝載藥物於腫瘤治療與含氧微氣泡之可行性研究
Drug-Loaded Microbubbles for Tumor Treatment and Feasibility Study of Oxygenated Microbubbles
指導教授: 廖愛禾
Ai-ho Liao
口試委員: 朱永祥
Yueng-Hsiang Chu
沈哲州
Zhe-Zhou Shen
莊賀喬
Ho-Chiao Chuang
廖愛禾
Ai-Ho Liao
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 81
中文關鍵詞: 5-氟尿嘧啶微氣泡對比劑超音波氧氣溶氧濃度
外文關鍵詞: 5-fluorouracil, microbubble, ultrasound, oxygen, dissolved oxygen
相關次數: 點閱:310下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來5-氟尿嘧啶﹙5-fluorouracil, 5-FU﹚被利用為癌症治療關鍵的化療藥物,但由於5-FU藥物常見的缺點,諸如極短的半衰期﹙10-15分鐘﹚、腎毒性等副作用,因此臨床上主要使用靜脈連續注射作為主要治療手段,這樣也增加了副作用的風險。本論文第一部分量測包覆5-FU的生物分布於白蛋白微氣泡對比劑﹙Microbubbles, MBs﹚結合超音波﹙Ultrasound, US﹚增加目標腫瘤區域之5-FU濃度,延長5-FU的半衰期,降低其餘代謝器官之5-FU濃度。實驗使用人類血清白蛋白﹙Human Serum Albumin, HSA﹚和0.32 mg / ml 5-FU溶液製備5-FU-MBs。結果證實,5-FU於MBs中最大藥物負載效率為18.04 ± 0.24%,電位為 - 0.57 ± 0.58 mV。於動物實驗中,治療時間31天,5-FU-MBs+US組別治療效果比5-FU組更加顯著,而在生物分布結果中, 5-FU-MBs+US組別於腫瘤中的藥物濃度也比5-FU組更高,代謝器官中的5-FU濃度則與其他組別相近,因此可以證明,包覆5-FU之MBs結合超音波可有效增加腫瘤中局部藥物傳遞效率及時間更為延長,對臨床投藥的劑量能有效的降低。
    第二部分中,則開發穩定的包覆氧氣的新型MBs﹙OMB﹚解決許多病症需要使用高壓氧局部進行治療的瓶頸,本論文使用人體血清白蛋白﹙Human Serum Albumin, HSA﹚包覆氧氣製備OMBs;結果表明,MBs與OMBs平均粒徑分別為1.86 ± 0.82 μm和3.46 ± 0.48 μm,OMBs經超音波打破後的溶氧濃度為9.66 ± 0.494 mg/L,打破效率為92.38 ± 0.99%,證實此新型微氣泡在凍乾前後同時具有包覆氧氣的特殊性,也很好的保留了原先MBs的基本性質以及特性,可以穩定保存並用於各種缺氧性疾病治療。


    Recently, 5-fluorouracil (5-FU) has been used as a chemotherapeutical drug in cancer treatment. However, 5-FU has several limitations such as extremely short half-life (10- 15 minutes) and renal toxicity etc. Hence, continuous intravenous injection is mainly used clinically, which may increase the risk of adverse effects. In this study, 5-FU is loaded in albumin microbubbles (MBs) to produce 5-FU-loaded microbubbles (5-FU-MBs). 5-FU-MBs combine with ultrasound which can increase the 5-FU concentration in the target tumor area, prolong the half-life of 5-FU, and reduce the 5-FU concentration in metabolic organs. 5-FU-MBs is produced by human serum albumin (HSA) and 0.32 mg/ml 5-FU solution. The drug encapsulation efficiency of 5-FU in MBs is 18.04 ± 0.24% and its zeta potential is -0.57 ± 0.58 mV. In the in vivo studies, after 31 days treatments, the results show that the therapeutic effect in 5-FU-MBs+US group is more significant than 5-FU group. The drug concentration within tumor in 5-FU-MBs+US group is significant higher than other groups. In biodistribution study, the concentration of 5-FU in metabolic organ in 5-FU-MBs+US group is close to other groups. Therefore, it can be proved that 5-FU-MBs combined with ultrasound can obviously increase the efficiency of local drug delivery in tumors. The dosage of drug can be reduced clinically.
    The second part in this thesis is to investigate oxygen-loaded MBs (OMB) used to treat hypoxic tissues. In previous studies, a successful cancer therapy is significantly affected by hypoxia in tissue, then, the dosage of drugs is increased or hyperbaric oxygen treatment is used clinically in order to achieve the therapeutic effect. In our thesis, OMB is produced as an oxygen loaded the human serum albumin (HSA) shell microbubbles. The experimental results show that the average particle size of MBs and OMBs are 1.86 ± 0.82 μm and 3.46 ± 0.48 μm, respectively. After application of ultrasound energy, the dissolved oxygen concentration of OMBs is 9.66 ± 0.494 mg/L, and the destruction efficiency is 92.38 ± 0.99%.The thesis also demonstrated the lyophilized microbubble which is easy for long term serving, still stable, and the property of lyophilized microbubble after rehydration is similar to non-lyophilized microbubble.

    第一部分 微氣泡裝載藥物於腫瘤治療 中文摘要 i ABSTRACT ii 目錄 iii 圖目錄 vii 表目錄 ix 第1章 、緒論 1 1.1 癌症 1 1.1.1 頭頸癌 1 1.2 治療癌症之發展 2 1.3 嘧啶類似物藥物簡介 4 1.3.1 5-氟尿嘧啶發展 4 1.3.2 藥理作用機制 5 1.3.3 副作用 6 1.4 人類血清白蛋白之介紹 7 1.5 人類血清白蛋白與5-氟尿嘧啶結合機制 7 1.6 微氣泡對比劑 8 1.7 超音波結合微氣泡對比劑增加局部治療 9 1.7.1 超音波 9 1.7.2 穴蝕效應 10 1.7.3 藥物傳輸機制 11 1.8 研究動機 12 第2章 、材料與方法 13 2.1 研究架構 13 2.2 藥品與設備 14 2.2.1 藥品 14 2.2.2 設備 14 2.3 無菌人類血清白蛋白包覆5-氟尿嘧啶之製作 15 2.4 白蛋白球殼包覆藥物之定量分析 16 2.5 無菌人類血清白蛋白包覆5-氟尿嘧啶之物性分析 16 2.5.1 電位分析 16 2.6 體內異種移殖抗腫瘤實驗 17 2.6.1 動物品系及飼養條件 17 2.6.2 異種移殖 17 2.6.3 抗腫瘤實驗分組與療程 18 2.6.4 3D非侵入式活體分子影像系統 19 2.6.5 藥物於生物體內之生物分布 20 2.7 統計分析 21 第3章 、實驗結果 22 3.1 包覆5-氟尿嘧啶微氣泡性質分析 22 3.1.1 UV/Vis定量定性分 22 3.1.2 電位分析 23 3.2 體內異種移植抗腫瘤實驗 24 3.2.1 活體內冷光影像及腫瘤生長趨勢之結果 24 3.2.2 藥物於生物體內之生物分布狀況 27 第4章 、討論 29 第5章 、結論 30 參考文獻 31 第二部分 含氧微氣泡可行性研究 第1章 、緒論 35 1.1 腫瘤 35 1.1.1 腫瘤微環境 35 1.1.2 腫瘤缺氧 36 1.1.3 腫瘤缺氧區域 36 1.2 內耳 38 1.2.1 耳蝸 38 1.2.2 耳蝸缺氧 38 1.2.3 高壓氧的缺點 39 1.3 氧氣型微氣泡 40 1.3.1 氧氣 40 1.3.2 溶氧值(DO) 40 1.3.3 氧氣型微氣泡應用 40 1.4 研究動機 41 第2章 、材料與方法 42 2.1 研究架構 42 2.2 藥品與設備 43 2.2.1 藥品 43 2.2.2 設備 43 2.3 氧氣微氣泡的製備 44 2.3.1 氧氣型微氣泡 44 2.3.2 氧氣型微氣泡的凍乾 44 2.4 氧氣微氣泡物性分析 45 2.4.1 粒徑分析 45 2.4.2 濃度分析 46 2.4.3 溶氧濃度(D.O)分析 48 2.4.4 高解析度場發射掃描式電子顯微鏡拍攝 49 2.4.5 仿體模擬體內實驗 50 2.5 統計分析 51 第3章 、實驗結果 52 3.1 氧氣微氣泡性質分析 52 3.1.1 光學定性影像 52 3.1.2 高解析度場發射掃描式電子顯微鏡表面觀察 54 3.1.3 粒徑分析 55 3.1.4 濃度分析 56 3.1.5 溶氧濃度(D.O)分析 58 3.1.6 仿體模擬體內實驗 59 第4章 、討論 62 第5章 、結論 64 參考文獻 65

    [1] World Health Organization. (accessed.
    [2] N. C. Institute. "Head and Neck Cancers." https://www.cancer.gov/types/head-and-neck/head-neck-fact-sheet (accessed.
    [3] C. P. Wild, B. W. Stewart, and C. Wild, World cancer report 2014. World Health Organization Geneva, Switzerland, 2014.
    [4] F. Mura, G. Bertino, A. Occhini, and M. Benazzo, "Surgical treatment of hypopharyngeal cancer: a review of the literature and proposal for a decisional flow-chart," Acta Otorhinolaryngologica Italica, vol. 33, no. 5, p. 299, 2013.
    [5] E. Katsoulakis et al., "Hypopharyngeal squamous cell carcinoma: Three‐dimensional or Intensity‐modulated radiotherapy? A single institution's experience," The Laryngoscope, vol. 126, no. 3, pp. 620-626, 2016.
    [6] 張金堅, "談百年來人類癌症治療發展史," 2013.
    [7] E. H. Balagamwala, A. Stockham, R. Macklis, and A. D. Singh, "Introduction to radiotherapy and standard teletherapy techniques," Ophthalmic Radiation Therapy, vol. 52, pp. 1-14, 2013.
    [8] C. M. Washington and D. T. Leaver, Principles and Practice of Radiation Therapy-E-Book. Elsevier Health Sciences, 2015.
    [9] G. L. Patrick, An introduction to medicinal chemistry. Oxford university press, 2013.
    [10] R. A. Harvey, M. Clark, R. Finkel, J. Rey, and K. Whalen, Lippincott’s illustrated reviews: Pharmacology. Philadelphia, 2012.
    [11] M. K. Noel, "Fighting infection using immunomodulatory agents," Expert Opinion on Biological Therapy, vol. 1, no. 4, pp. 641-653, 2001.
    [12] K. Fujita et al., "Prolonged disease-free period in patients with advanced epithelial ovarian cancer after adoptive transfer of tumor-infiltrating lymphocytes," Clinical cancer research, vol. 1, no. 5, pp. 501-507, 1995.
    [13] 淑柳, 菁昀, 慧芬, 淑代蕭, 仲峯, and 欣倫, "骨轉移疼痛新治療: 磁振導航聚焦超音波熱治療," 新臺北護理期刊, vol. 18, no. 1, pp. 23-30, 2016.
    [14] N. Kemeny and F. Fata, "Arterial, portal, or systemic chemotherapy for patients with hepatic metastasis of colorectal carcinoma," Journal of hepato-biliary-pancreatic surgery, vol. 6, no. 1, pp. 39-49, 1999.
    [15] C. Kuropkat, K. Griem, J. Clark, E. R. Rodriguez, J. Hutchinson, and S. G. Taylor IV, "Severe cardiotoxicity during 5-fluorouracil chemotherapy: a case and literature report," American journal of clinical oncology, vol. 22, no. 5, p. 466, 1999.
    [16] S. Matsusaka and H.-J. Lenz, "Pharmacogenomics of fluorouracil-based chemotherapy toxicity," Expert opinion on drug metabolism & toxicology, vol. 11, no. 5, pp. 811-821, 2015.
    [17] D. B. Longley, D. P. Harkin, and P. G. Johnston, "5-fluorouracil: mechanisms of action and clinical strategies," Nature reviews cancer, vol. 3, no. 5, pp. 330-338, 2003.
    [18] E. ML and K. JE, "Effect of 5-fluorouracil on the incorporation of precursors into nucleic acid pyrimidines," Archives of biochemistry and biophysics, vol. 71, no. 1, pp. 274-275, 1957.
    [19] J. Souglakos et al., "Combination of irinotecan (CPT-11) plus oxaliplatin (L-OHP) as first-line treatment in locally advanced or metastatic gastric cancer: a multicentre phase II trial," Annals of Oncology, vol. 15, no. 8, pp. 1204-1209, 2004.
    [20] J. A. Houghton and P. J. Houghton, "Elucidation of pathways of 5-fluorouracil metabolism in xenografts of human colorectal adenocarcinoma," European Journal of Cancer and Clinical Oncology, vol. 19, no. 6, pp. 807-815, 1983.
    [21] J. S. Hyams, C. L. Batrus, R. J. Grand, and S. E. Sallan, "Cancer chemotherapy‐induced lactose malabsorption in children," Cancer, vol. 49, no. 4, pp. 646-650, 1982.
    [22] C. Møller, H. S. Tastesen, B. Gammelgaard, I. H. Lambert, and S. Stürup, "Stability, accumulation and cytotoxicity of an albumin-cisplatin adduct," Metallomics, vol. 2, no. 12, pp. 811-818, 2010.
    [23] F. Kratz, "Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles," Journal of controlled release, vol. 132, no. 3, pp. 171-183, 2008.
    [24] S. Chinnathambi, S. Karthikeyan, M. Kesherwani, D. Velmurugan, and N. Hanagata, "Underlying the mechanism of 5-fluorouracil and human serum albumin interaction: a biophysical study," J. Phys. Chem. Biophys, vol. 6, p. 214, 2016.
    [25] M. J. Borrelli et al., "Production of uniformly sized serum albumin and dextrose microbubbles," Ultrasonics sonochemistry, vol. 19, no. 1, pp. 198-208, 2012.
    [26] X. Zhu et al., "Ultrasound triggered image-guided drug delivery to inhibit vascular reconstruction via paclitaxel-loaded microbubbles," Scientific reports, vol. 6, no. 1, pp. 1-12, 2016.
    [27] 陳思嘉, "靶向超音波於血栓溶解之研究," 臺灣大學生醫電子與資訊學研究所學位論文, pp. 1-64, 2009.
    [28] S. Tinkov, R. Bekeredjian, G. Winter, and C. Coester, "Microbubbles as ultrasound triggered drug carriers," Journal of pharmaceutical sciences, vol. 98, no. 6, pp. 1935-1961, 2009.
    [29] W. D. O’Brien Jr, "Ultrasound–biophysics mechanisms," Progress in biophysics and molecular biology, vol. 93, no. 1-3, pp. 212-255, 2007.
    [30] 盧聖介, "包覆空氣微脂體於高頻超音波影像與聲學非線性性質研究與應用," 清華大學生醫工程與環境科學系學位論文, pp. 1-87, 2008.
    [31] F. S. Foster, C. J. Pavlin, K. A. Harasiewicz, D. A. Christopher, and D. H. Turnbull, "Advances in ultrasound biomicroscopy," Ultrasound in medicine & biology, vol. 26, no. 1, pp. 1-27, 2000.
    [32] A. Miller, "Scanning acoustic microscopy in electronics research," IEEE transactions on sonics and ultrasonics, vol. 32, no. 2, pp. 320-324, 1985.
    [33] D. H. Turnbull et al., "A 40–100 MHz B-scan ultrasound backscatter microscope for skin imaging," Ultrasound in medicine & biology, vol. 21, no. 1, pp. 79-88, 1995.
    [34] D. Knspik, B. Starkoski, C. J. Pavlin, and F. S. Foster, "A 100-200 MHz ultrasound biomicroscope," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 47, no. 6, pp. 1540-1549, 2000.
    [35] H.-L. Liu, C.-H. Fan, C.-Y. Ting, and C.-K. Yeh, "Combining microbubbles and ultrasound for drug delivery to brain tumors: current progress and overview," Theranostics, vol. 4, no. 4, p. 432, 2014.
    [36] A. L. Klibanov, "Ligand-carrying gas-filled microbubbles: ultrasound contrast agents for targeted molecular imaging," Bioconjugate chemistry, vol. 16, no. 1, pp. 9-17, 2005.
    [37] H. Chen and J. H. Hwang, "Ultrasound-targeted microbubble destruction for chemotherapeutic drug delivery to solid tumors," Journal of therapeutic ultrasound, vol. 1, no. 1, pp. 1-8, 2013.
    [38] P. Dijkmans et al., "Microbubbles and ultrasound: from diagnosis to therapy," European Journal of Echocardiography, vol. 5, no. 4, pp. 245-246, 2004.
    [39] E. Joseph and G. Singhvi, "Multifunctional nanocrystals for cancer therapy: a potential nanocarrier," Nanomaterials for drug delivery and therapy, pp. 91-116, 2019.
    [40] R. Vogel et al., "High-resolution single particle zeta potential characterisation of biological nanoparticles using tunable resistive pulse sensing," Scientific reports, vol. 7, no. 1, pp. 1-13, 2017.
    [1] M. K. Danquah, X. A. Zhang, and R. I. Mahato, "Extravasation of polymeric nanomedicines across tumor vasculature," Advanced drug delivery reviews, vol. 63, no. 8, pp. 623-639, 2011.
    [2] S. Rockwell, I. T. Dobrucki, E. Y. Kim, S. T. Marrison, and V. T. Vu, "Hypoxia and radiation therapy: past history, ongoing research, and future promise," Current molecular medicine, vol. 9, no. 4, pp. 442-458, 2009.
    [3] P. Vaupel, M. Höckel, and A. Mayer, "Detection and characterization of tumor hypoxia using pO2 histography," Antioxidants & redox signaling, vol. 9, no. 8, pp. 1221-1236, 2007.
    [4] R. L. Siegel, K. D. Miller, and A. Jemal, "Cancer statistics, 2016," CA: a cancer journal for clinicians, vol. 66, no. 1, pp. 7-30, 2016.
    [5] M. H. Bennett, J. Feldmeier, R. Smee, and C. Milross, "Hyperbaric oxygenation for tumour sensitisation to radiotherapy," Cochrane Database of Systematic Reviews, no. 4, 2018.
    [6] M. Henke et al., "Erythropoietin to treat head and neck cancer patients with anaemia undergoing radiotherapy: randomised, double-blind, placebo-controlled trial," The Lancet, vol. 362, no. 9392, pp. 1255-1260, 2003.
    [7] P. Vaupel and A. Mayer, "Hypoxia in cancer: significance and impact on clinical outcome," Cancer and Metastasis Reviews, vol. 26, no. 2, pp. 225-239, 2007.
    [8] S. Kizaka‐Kondoh, M. Inoue, H. Harada, and M. Hiraoka, "Tumor hypoxia: a target for selective cancer therapy," Cancer science, vol. 94, no. 12, pp. 1021-1028, 2003.
    [9] P. Vaupel, O. Thews, and M. Hoeckel, "Treatment resistance of solid tumors," Medical oncology, vol. 18, no. 4, pp. 243-259, 2001.
    [10] P. Vaupel, A. Mayer, and M. Höckel, "Tumor hypoxia and malignant progression," Methods in enzymology, vol. 381, pp. 335-354, 2004.
    [11] P. Vaupel, S. Briest, and M. Höckel, "Hypoxia in breast cancer: pathogenesis, characterization and biological/therapeutic implications," Wiener Medizinische Wochenschrift, vol. 152, no. 13‐14, pp. 334-342, 2002.
    [12] J.-P. Cosse and C. Michiels, "Tumour hypoxia affects the responsiveness of cancer cells to chemotherapy and promotes cancer progression," Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), vol. 8, no. 7, pp. 790-797, 2008.
    [13] J. A. Bertout, S. A. Patel, and M. C. Simon, "The impact of O 2 availability on human cancer," Nature Reviews Cancer, vol. 8, no. 12, pp. 967-975, 2008.
    [14] A. S. Machado, "Evolução da língua gestual portuguesa e o impacto no quotidiano da pessoa surda," 2018.
    [15] F. R. Lin et al., "Hearing loss and cognitive decline in older adults," JAMA internal medicine, vol. 173, no. 4, pp. 293-299, 2013.
    [16] 張碩軒, " 影響"聲音"之系統之研究整合," 2008.
    [17] 長庚醫療財團法人, "耳部手術照護須知," 2018.
    [18] A. M. Ayoob, M. Peppi, V. Tandon, R. Langer, and J. T. Borenstein, "Intracochlear drug delivery: Fluorescent tracer evaluation for quantification of distribution in the cochlear partition," European Journal of Pharmaceutical Sciences, vol. 126, pp. 49-58, 2019.
    [19] R. Thalmann, T. Miyoshi, and I. Thalmann, "The influence of ischemia upon the energy reserves of inner ear tissues," The Laryngoscope, vol. 82, no. 12, pp. 2249-2272, 1972.
    [20] K. Lamm and W. Arnold, "Successful Treatment of Noise‐Induced Cochlear Ischemia, Hypoxia, and Hearing Loss," Annals of the New York Academy of Sciences, vol. 884, no. 1, pp. 233-248, 1999.
    [21] X. Shi, "Pathophysiology of the cochlear intrastrial fluid-blood barrier," Hearing research, vol. 338, pp. 52-63, 2016.
    [22] J. C. Buckey, "Use of gases to treat cochlear conditions," Frontiers in cellular neuroscience, vol. 13, p. 155, 2019.
    [23] T. G. Joshua, "Sudden sensorineural hearing loss," University of British Columbia, 2020.
    [24] T. Kamogashira, C. Fujimoto, and T. Yamasoba, "Reactive oxygen species, apoptosis, and mitochondrial dysfunction in hearing loss," BioMed Research International, vol. 2015, 2015.
    [25] B. Ö. Çakir et al., "Negative effect of immediate hyperbaric oxygen therapy in acute acoustic trauma," Otology & Neurotology, vol. 27, no. 4, pp. 478-483, 2006.
    [26] A. A. A. Kuokkanen, Jukka Ylikoski, Juha, "Efficiency of hyperbaric oxygen therapy in experimental acute acoustic trauma from firearms," Acta Oto-Laryngologica, vol. 120, no. 543, pp. 132-134, 2000.
    [27] S. M. Fix, M. A. Borden, and P. A. Dayton, "Therapeutic gas delivery via microbubbles and liposomes," Journal of Controlled Release, vol. 209, pp. 139-149, 2015.
    [28] S. M. Fix et al., "Oxygen microbubbles improve radiotherapy tumor control in a rat fibrosarcoma model–A preliminary study," PLoS One, vol. 13, no. 4, p. e0195667, 2018.
    [29] 潘善鵬, ",動態光散射儀於奈米粉體粒徑之量測不確定分析,," 翁漢甫機械工業雜誌, 2007.
    [30] 王子瑜、曹恒光, "漫談布朗運動," 物理雙月刊, 2005.
    [31] Nanoparticle Analyzer SZ-100S儀器使用操作手冊.
    [32] 楊粉榮、文洪杰、鍾勤, "幾種粒徑量測定方法比較," Physics Examination and Testing, 2005.
    [33] COULTER COUNTER®(Multisizer™)儀器使用操作手冊.

    無法下載圖示 全文公開日期 2026/08/09 (校內網路)
    全文公開日期 2026/08/09 (校外網路)
    全文公開日期 2026/08/09 (國家圖書館:臺灣博碩士論文系統)
    QR CODE