研究生: |
甄御承 Yu-Cheng Jhen |
---|---|
論文名稱: |
錫銲料與銅鐵合金(C194)鍍鎳之液/固界面反應之研究 Liquid/Solid interfacial reactions between the Sn solder and Cu-Fe alloy (C194) with the Ni electroplating layer |
指導教授: |
顏怡文
Yee-Wen Yen |
口試委員: |
顏怡文
Yee-Wen Yen 陳志銘 Chih-Ming Chen 吳子嘉 Tzu-Chia Wu 鄭明正 Ming-Cheng Cheng |
學位類別: |
碩士 Master |
系所名稱: |
工程學院 - 材料科學與工程系 Department of Materials Science and Engineering |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 117 |
中文關鍵詞: | 液/固界面反應 、無鉛銲料/C194 基材 、介金屬相 、成長機制 、晶格擴散控制 |
外文關鍵詞: | Liquid/solid state interfacial reaction, Lead-free solder (LFS)/C194 couple, Intermetallic compound, Growth mechanism, Diffusion controlled |
相關次數: | 點閱:369 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究所使用的 C194 合金成分為: Cu-2.35 wt.% Fe-0.07 wt.% P-0.12 wt.% Zn,C194 合金為目前常做為導線架使用之銅合金,其多用於 100 pins 以下之引腳數,其優點有高強度、高電導率、細晶結構、高抗腐蝕性、優秀的銲接性、高抗軟化性等。雖然 C194 被廣泛應用,但並未有在 C194 上電鍍鎳和無鉛銲錫進行界面反應之研究。因此,本研究目的在探討其液/固界面反應,以判斷在 C194 上鍍鎳的最佳厚度。
本實驗使用 Sn 作為銲料,Sn 銲料為最常使用的基礎銲料,其優點在於適用較高溫環境、優良的可銲性、良好的濕潤性以及極低的成本等。本研究中,在 C194/Sn 界面電鍍一層 Ni,電鍍 Ni 層的目的在於可作為 C194/Sn 界面的擴散阻障層,因 Ni 和 Cu 交互擴散不會形成介金屬相 (intermetallic compound, IMC),且 Ni 和銲料的反應速率相較於 Cu 和銲料的反應速率較低,能減緩銲點之間的界面反應。因此,本研究探討了 Sn 銲料與三種不同厚度的 Ni (1、3 和 5 µm) 電鍍在 C194 合金基材之間的界面反應,並判斷何種厚度的 Ni 層有最好的最佳厚度。在 240、255 和 270 °C 迴銲溫度下,使用液體/固體反應耦合,迴銲時間範圍設定在 30 到 480 秒。樣品製備完畢後使用掃描式電子顯微鏡並搭配能量散射光譜儀來觀察並探討不同迴銲條件下 IMC 的種類、形態和組成。此外,基於不同迴銲條件下 IMC 的厚度,更深入探討了反應機制和生長速率常數。
研究結果顯示,若 Ni 未因迴銲形成 IMC 消耗完畢,則界面形成的 IMC 為 (Ni, Cu)3Sn4 相。迴銲溫度為 240 °C,迴銲時間到 360 秒 ,則電鍍 1 µm Ni 層的樣品其 Ni 層會因和 Sn 迴銲形成介金屬相而消耗完畢,在界面處形成 (Cu, Ni)6Sn5 相,若迴銲溫度上升為 255 °C,則在迴銲時間 60 秒電鍍 1 µm Ni 層的樣品就發現 Ni 層和 Sn 迴銲形成介金屬相而消耗完畢,在界面處形成 (Cu, Ni)6Sn5 相,而迴銲溫度上升至 270 °C,電鍍 1、3 µm Ni 層的樣品,迴銲時間分別為 30、480 秒,發現 Ni 層和 Sn 迴銲形成介金屬相而消耗完畢,在界面處形成 (Cu, Ni)6Sn5 相。經由結果發現,當迴銲溫度相同,樣品電鍍越厚的 Ni,形成 (Cu, Ni)6Sn5 相的時間會越晚。在 240、255、270 °C下,若 Ni 層在迴銲中未消耗完畢,則形成的 IMC 為 (Ni, Cu)3Sn4 相。隨著迴銲時間和溫度增加, IMC 厚度也會上升,且 (Ni, Cu)3Sn4 相上升的幅度比 (Cu, Ni)6Sn5 相更低。本研究中,除了 240 °C Sn/Ni(1 μm)/C194 迴銲時間 240 - 480 秒外,其餘不同迴銲條件的介金屬相厚度與迴銲時間之平方根皆呈線性關係,探討 IMC 成長機制可發現為擴散反應控制。在電性的分析中可以發現,若該樣品形成的 IMC 為 (Cu, Ni)6Sn5 相,相較於形成 (Ni, Cu)3Sn4 相的樣品,基材到銲料之間的電阻值較高。而若樣品形成的 IMC 都為同一種 IMC,當迴銲時間增加或迴銲溫度上升,IMC 的厚度上升,從基材到銲料之間的電阻值也會上升。若形成的 IMC 都為(Ni, Cu)3Sn4 相,當迴銲時間和迴銲溫度皆相同,電鍍越薄 Ni 層的樣品其電阻值較高。
The composition of the C194 alloy used in this study is Cu-2.35 wt.% Fe-0.07 wt.% P-0.12 wt.% Zn. C194 alloy is commonly used as a copper alloy for lead frames, particularly for pins numbering less than 100. Its advantages include high strength, high electrical conductivity, fine grain structure, high corrosion resistance, excellent solderability, and high softening resistance. Although C194 is widely used, there has been no research on the interfacial reactions of nickel electroplating and lead-free soldering on C194. Therefore, the purpose of this study is to explore the liquid/solid interfacial reactions to determine the optimal thickness of nickel electroplating on C194.
In this experiment, Sn was used as the solder. Sn solder is the most commonly used base solder due to its suitability for higher temperature environments, excellent solderability, good wettability, and very low cost. In this study, a layer of Ni was electroplated on the C194/Sn interface. The purpose of electroplating the Ni layer is to act as a diffusion barrier at the C194/Sn interface since Ni and Cu do not form intermetallic compounds (IMCs) through mutual diffusion. Additionally, the reaction rate between Ni and the solder is slower compared to that between Cu and the solder, which can slow down the interfacial reaction between the solder joints. Therefore, this study investigates the interfacial reactions between Sn solder and three different thicknesses of Ni (1, 3, and 5 µm) electroplated on C194 alloy substrates to determine the optimal thickness of the Ni layer.
Reflow temperatures of 240, 255, and 270 °C were used with liquid/solid reaction couples, and reflow times ranged from 30 to 480 seconds. After sample preparation, a scanning electron microscope (SEM) equipped with an energy dispersive spectrometer (EDS) was used to observe and analyze the types, morphologies, and compositions of IMCs formed under different reflow conditions. Additionally, based on the thickness of the IMCs under different reflow conditions, the reaction mechanism and growth rate constants were further investigated.
The results show that if the Ni layer is not completely consumed by forming IMCs during reflow, the IMC formed at the interface is (Ni, Cu)3Sn4. At a reflow temperature of 240°C, the Ni layer of the sample with 1 µm Ni is completely consumed by forming IMCs after reflowing for 360 seconds, forming (Cu, Ni)6Sn5 at the interface. If the reflow temperature is increased to 255°C, the Ni layer of the sample with 1 µm Ni is consumed after 60 seconds, forming (Cu, Ni)6Sn5 at the interface. When the reflow temperature is further increased to 270°C, the Ni layers of the samples with 1 µm and 3 µm Ni are consumed after 30 and 480 seconds, respectively, forming (Cu, Ni)6Sn5 at the interface. The results indicate that at the same reflow temperature, the thicker the electroplated Ni, the later the formation of (Cu, Ni)6Sn5. At 240, 255, and 270 °C, if the Ni layer is not completely consumed during reflow, the formed IMC is (Ni, Cu)3Sn4. As reflow time and temperature increase, the thickness of the IMC also increases, with the increase in (Ni, Cu)3Sn4 thickness being lower than that of (Cu, Ni)6Sn5.
In this study, except for the 240°C Sn/Ni (1 μm)/C194 reflow for 240 - 480 seconds, the thickness of the IMCs under different reflow conditions showed a linear relationship with the square root of the reflow time, indicating that the reaction mechanism is diffusion-controlled. In the electrical analysis, it was found that samples with (Cu, Ni)6Sn5 IMC had higher resistance between the substrate and the solder compared to those with (Ni, Cu)3Sn4 IMC. Furthermore, if the IMCs formed are of the same type, an increase in reflow time or temperature results in a thicker IMC, leading to higher resistance between the substrate and the solder. If the formed IMCs are (Ni, Cu)3Sn4, samples with thinner electroplated Ni layers have higher resistance under the same reflow time and temperature.
[1] Y. Su, J. Shi, Y. M. Hsu, D. Y. Ji, A. D. Suer, and J. Lee, Volumetric nondestructive metrology for 3D semiconductor packaging: A review, Measurement, 225 (2024) 65-114.
[2] E. D. 96/EC, WEEE Regulations, (2002).
[3] R. Regulations, RoHS Regulations, (2002).
[4] A. Rahn, The Basics of Soldering, John Wiely & Sons (1993): New York.
[5] C. Dong, T. Guo, H. Ma, H. Ma, and Y. Wang, Effect of solder composition on the growth behavior of interfacial compounds on (001) Cu and polycrystalline Cu during aging, Materials Characterization, 194 (2022) 112-380.
[6] K. Zeng, R. Stierman, T. C. Chiu, D. Edwards, K. Ano, and K. N. Tu, Kirkendall void formation in eutectic SnPb solder joints on bare Cu and its effect on joint reliability, Journal of Applied Physics, 97 (2004) 24-508.
[7] T. Laurila, V. Vuorinen, and M. P. Kröckel, Impurity and alloying effects on interfacial reaction layers in Pb-free soldering, Materials Science and Engineering: R: Reports, 68 (2010) 1-38.
[8] 張景勛,無鉛銲料與銅-鈹合金(合金 25)界面反應之研究。國立臺灣科技大學材料科學與工程系碩士論文 (2018):台北市。
[9] 蔡子揚,Sn-0.7 Cu 合金與 C194 和 Alloy 25 基材界面反應之研究。國立臺灣科技大學材料科學與工程系碩士論文 (2021):台北市。
[10] 溫俊,無鉛銲錫與 C194 基材的界面反應。國立臺灣科技大學材料科學與工程系碩士論文 (2021):台北市。
[11] G. Ghosh, Interfacial microstructure and the kinetics of interfacial reaction in diffusion couples between Sn-Pb solder and Cu/Ni/Pd metallization, Acta Materialia, 48 (2000) 3719-3738.
[12] C. C. Chen, S.W. Chen, and C. Y. Kao, Interfacial reactions in the Sn-(Ag)/(Ni,V) couples and phase equilibria of the Sn-Ni-V system at the Sn-rich corner, J. Electron. Mater, 35 (2006) 922-928.
[13] Y. H. Chao, S. W. Chen, C. H. Chang, and C. C. Chen, Phase equilibria of Sn-Co-Ni system and interfacial reactions in Sn/(Co, Ni) couples, Metall. Mater. Trans. A, 39 (2008) 477-489.
[14] E. J. Rymaszewski, R. R. Tummala, and T. Watari, Microelectronics Packaging-An Overview, in: R. R. Tummala, E. J. Rymaszewski (Eds.), Microelectronics Packaging Handbook: Semiconductor Packaging, Springer US, Boston, MA, (1997) 3-128.
[15] 陳信文、陳立軒、林永森、陳志銘,電子構裝技術與材料,高立出版,(2004) 35-44。
[16] J. H. Lau, C. P. Wong, W. Nakayama, and J.L. Prince, Electronic Packaging: Design, Materials, Process, and Reliability, (1998) 878-998.
[17] J. H. Lau, C. P. Wong, J. Prince, and W. Nakayama, Electronic Packaging: Design, Materials, Process, and Reliability, McGraw-Hill, (1998) 1573-1745.
[18] J. Franke, L. Wang, K. Bockc, and J. Wilde, Electronic module assembly, CIRP Annals-Manufacturing Technology, 70 (2021) 471-493
[19] 蔡聰男,自適應式表面黏著製程品質預測控制系統之發展。國立成功大學製造工程研究所碩士論文 (2003),台南市。
[20] D. Amir, Expert system for SMT assembly, in Proceedings of the Surface Mount International Conference and Exposition-Technical Program, San Jose, CA, (1994) 691-699.
[21] Y. W. Yen, A. D. Laksono, Y. C. Liou, M. Ramadhani, Y. Y. Lee, and S. C. Huang, Solid/solid state interfacial reactions in the lead-free solders/Cu- 2.3%wt. Fe alloy (C194) couples, Journal of the Taiwan Institute of Chemical Engineers, 155 (2024) 105-278.
[22] A. D. Laksono, T. Y. Tsai, T. H. Chung, Y. C. Chang and Y. W. Yen, Investigation of the Sn-0.7 wt.% Cu Solder Reacting with C194, Alloy 25, and C1990 HP Substrates, Metal, (2023) 634-651.
[23] 陳信文,電子與材料第一期,無鉛銲料簡介,(1996) 74-77。
[24] C. Hang, J. He, Z. Zhang, H. Chen, and M. Li, Low Temperature Bonding by Infiltrating Sn3.5Ag Solder into Porous Ag Sheet for High Temperature Die Attachment in Power Device Packaging, Scientific Reports, 8 (2018) 410-418.
[25] Y. Ding, C. Wang, M. Li, and W. Wang, In situ TEM observation of microcrack nucleation and propagation in pure tin solder, Materials Science and Engineering B, 127 (2006) 62-69.
[26] G. Schiavone, Manufacturing integrated MEMS switching devices using electrodeposited NiFe. The University of Edinburgh, (2014) 256-278.
[27] H. Ma and J. C. Suhling, A review of mechanical properties of lead-free solders for electronic packaging, Journal of Materials Science, 44 (2009) 1141-1158.
[28] W. J. Plumbridge, Recent Observations on Tin Pest Formation in Solder Alloys, Journal of Electronic Materials, 37 (2008) 218-223.
[29] 程秀雲、張振華,電鍍技術,化學工業出版,(2003) 69-83。
[30] 郭鶴桐、張三元,複合電鍍技術,化學工業出版,(2007) 78-92。
[31] 陳范才,現代電鍍技術,化學工業出版,(2003) 43-87。
[32] A. Martin, and M. Thuo, Beyond Hume-Rothery Rules, In: Accounts of Materials Research, 4 (2023) 809-813.
[33] M. Schaefer, R. A. Fournelle, and J. Liang, Theory for intermetallic phase growth between cu and liquid Sn-Pb solder based on grain boundary diffusion control, Journal of Electronic Materials, 27 (1998) 1167-1176.
[34] 曾堉,金屬基材與介金屬相在無鉛銲料中溶解現象的探討。國立臺灣科技大學化學工程系碩士論文 (2006),台北市。
[35] H. K. Kim and K. N. Tu, Kinetic analysis of the soldering reaction between eutectic SnPb alloy and Cu accompanied by ripening, Physical Review B, 53 (1996) 16027-16034.
[36] 王信介,自生迴銲阻障層 Cu-Ni-Sn 相在覆晶式構裝之研究。國立中央大學化學工程與材料工程研究所碩士論文 (2003),桃園縣。
[37] 王信介,覆晶凸塊構裝之兩界面反應交互作用研究。國立中央大學化學工程與材料工程研究所碩士論文 (2006),桃園縣。
[38] C. H. Tsai, S. Y. Lin, P. T. Lee, and R. Kao, A new spalling mechanism of intermetallics from the adhesion layer in the terminal-stage reaction between Cu and Sn, Intermetallics, 138 (2021) 107-342.
[39] J. W. R. Teo, and Y. F. Sun, Spalling behavior of interfacial intermetallic compounds in Pb-free solder joints subjected to temperature cycling loading, Acta Materialia, 56 (2008) 242-249.
[40] 楊巧詣,銲墊表面處理層開發暨顯微組織分析。國立臺灣科技大學材料科學與工程系碩士論文 (2021),台北市。
[41] X. Hu, and Z. Ke, Growth behavior of interfacial Cu-Sn intermetallic compounds of Sn/Cu 82 reaction couples during dip soldering and aging, Journal of Materials Science: Materials in Electronics, 25 (2014) 936-945.
[42] K. N. Tu, Interdiffusion and reaction in bimetallic Cu-Sn thin films, Acta Metallurgica, 21 (1973) 347-354.
[43] N. Zhao, Y. Zhong, M. L. Huang, H. T. Ma, and W. Dong, Growth kinetics of Cu6Sn5 intermetallic compound at liquid-solid interfaces in Cu/Sn/Cu interconnects under temperature gradient, Scientific Reports, 5 (2015) 91-134.
[44] W.-m. Tang, A.-q. He, Q. Liu, and D. G. Ivey, Solid state interfacial reactions in electrodeposited Cu/Sn couples, Transactions of Nonferrous Metals Society of China, 20 (2010) 90-96.
[45] J. F. Li, P. A. Agyakwa, and C. M. Johnson, Interfacial reaction in Cu/Sn/Cu system during the transient liquid phase soldering process, Acta Materialia, 59 (2011) 1198-1211.
[46] T. Liu, D. Kim, D. Leung, M. A. Korhonen, and C. Y. Li, High Sn Solder Reaction with Cu Metallization, Scripta Materialia, 35 (1996) 65-69.
[47] K. N. Tu, Cu/Sn interfacial reactions: Thin-film case versus bulk case, Materials Chemistry and Physics, 46 (1996) 217-223.
[48] F. Bartels, J. W. Morris, Jr., G. Dalke, and W. Gust, Intermetallic phase formation in thin solid-liquid diffusion couples, Journal of Electronic Materials, 23 (1994) 787-790.
[49] S. Bader, W. Gust, and H. Hieber, Rapid formation of intermetallic compounds by interdiffusion in the Cu-Sn and Ni-Sn systems, Acta. Metall. Mater. 43 (1995) 329-337.
[50] L. H. Su, Y. W. Yen, C. C. Lin, and S. W. Chen, Interfacial reactions in molten Sn/Cu and molten In/Cu couples, Metall. Mater. Trans. B, 28 (1997) 927-934.
[51] T. Laurila, V. Vuorinen, and J. K. Kivilahti, Interfacial reactions between lead-free solders and common base materials, Materials Science and Engineering R, 49 (2005) 1-60.
[52] W. J. Tomlinson, and H. G. Rhodes, Kinnetics of intermetallic compound growthbetween nickel, electroless Ni-P, electroless Ni-B and tin at 453 to 493 K, Journal of Materials Science, 22(5) (1987) 1769-1772.
[53] S. W. Chen, C. M. Chen, and W. C. Liu, The electric current effects upon the Sn/Cu and Sn/Ni interfacial reactions, Journal of Electronic Materials, 27(11) (1998) 1193-1198.
[54] D. Gur, and M. Bamberger, Reactive isothermal solidification in the Ni-Sn system, Acta Materialia, 46 (1998) 4917-4923.
[55] S. K. Kang, and V. Ramachandran, Growth kinetics of intermetallic phases at the liquid Sn and solid Ni interface, Scripta Metallic, 14 (1980) 421-424.
[56] 李宥諺,無鉛銲料與銅-鐵合金(C194)界面反應之研究。國立臺灣科技大學材料科學與工程系碩士論文 (2022),台北市。
[57] C. Yang, S. Ren, X. Zhang, A. Hu, M. Li, L. Gao, H. Ling, and T. Hang, Effect of Sn surface diffusion on growth behaviors of intermetallic compounds in cu/Ni/SnAg microbumps, Materials Characterization, 159 (2020) 110-130.
[58] B. S. Lee, Y. H. Ko, J. H. Bang, C. W. Lee, S. Yoo, J. K. Kim, and J. W. Yoon, Interfacial reactions and mechanical strength of Sn-3.0Ag-0.5Cu/Ni/Cu and Au-20Sn/Ni/Cu solder joints for power electronics applications, Microelectronics Reliability, 71 (2017) 119-125.
[59] P. Y. Chia, A. S. M. A. Haseeb, and S. H. Mannan, Reactions in Electrodeposited Cu/Sn and Cu/Ni/Sn Nanoscale Multilayers for Interconnects, Materials (Basel), 9(6) (2016) 430.
[60] R. Wang, Z. Yuan, B. Ma, L. Mei, H Zhao and B. Xu, Wetting behavior and mechanical properties of Sn-10Sb solder/Ni-plated Cu system with different surface structures, Vacuum, 217 (2023) 112-140.
[61] K. Cheng, Y. Qi, Y. Xiao, J. Liu, D. Li, G. Shen and J. Zhang, Study on the metallurgical reaction law and mechanism of the Ni-xCu alloys/pure Sn solid-liquid interface, Materials Characterization, 201 (2023) 112-127.
[62] M. C. Chiu, M. Y. Tsai, S. B. Wang, Y. S. Lin and C. L. Liang, Applications of Ni and Ag metallizations at the solder/Cu interfaces in advanced high-power automobile interconnects: An electromigration study, Surface and Coatings Technology, 484 (2024) 128-130.
[63] Y. Yin, H. Ling, F. Guo, A. Hu, and M. Li, Investigation of the intermetallic compounds growth in 10μm Cu/Sn and Cu/Ni/Sn microbumps under isothermal temperature aging, 21st International Conference on Electronic Packaging Technology (ICEPT), (2020) 158-163.
[64] M. Ma, S. Ren, J. Wang, A. Hu, and M. Li, Influence of Bump Diameter on the Growth of Intermetallic Compounds in Cu/Ni/Sn Copper Pillar Bump During Aging Process, 21st International Conference on Electronic Packaging Technology (ICEPT), (2020) 70-76.
[65] K. Chen, H. Ling, F. Guo, M. Li, W. Zhang, and L. Cao, Effect of Ni barrier layer thickness on IMCs evolution in Ф5μm Cu/Ni/Sn pillar bumps, 19th International Conference on Electronic Packaging Technology, (2018) 50-57.
[66] B. Dimcic, J. D. Messemaeker, W. Zhang, C. Kristof, K. Vanstreels, B. Verlinden, and I. D. Wolf, Phase formation in Cu/Ni/Sn thin film systems, 4th Electronic System-Integration Technology Conference Electronic System-Integration Technology Conference (ESTC), (2012) 203-208.
[67] 施伯錚,錫-銀-銅銲錫接點中導入錫-鋅-鉍錫膏之界面反應、剪力和電性質研究。國立成功大學材料科學與工程學系碩士論文 (2006),台南市。
[68] T. T. Chang, S. S. Wang, and T. H. Chuang, The Application Research of Resistance Instrument on the Ball Grid Array Packages. 國立臺灣大學材料科學與工程學系碩士論文 (2021),台北市。
[69] C. H. Lin, S. W. Chen, and C. H. Wang, Phase Equilibria and Solidification Properties of Sn-Cu-Ni Alloys, J. Electron. Mater, 31 (2002) 907-915.
[70] C. Schmetterer, H. Flandorfer, L. W. Richter, and H. Ipser, Phase Equilibria in the Ag-Ni-Sn System: Isothermal Sections, Journal of Electronic Materials, 36(11) (2007) 1415-1428.
[71] J. Y. Tsai, Y. C. Hu, C. M. Tsai, and C. R. Kao, A study on the reaction between Cu and Sn3.5Ag solder doped with small amounts of Ni, Journal of Electronic Materials, 32 (2003) 1203-1208.
[72] H. R. Kotadia, A. Panneerselvam, O. Mokhtari, M. A. Green, and S. H. Mannan, Massive spalling of Cu-Zn and Cu-Al intermetallic compounds at the interface between solders and Cu substrate during liquid state reaction, Journal of Applied Physics, 111 (2012) 74-92.
[73] T. T. Huang, S.W. Lin, C. M. Chen, P. Y. Chen and Y. W. Yen, Phase Equilibria of the Fe-Ni-Sn Ternary System at 270 °C, Journal of Electronic Materials, 45 (2016) 6208-6213.
[74] S. Tian, J. Zhou, F. Xue, R. Cao, and F. Wang, Microstructure, interfacial reactions and mechanical properties of Co/Sn/Co and Cu/Sn/Cu joints produced by transient liquid phase bonding, Journal of Materials Science: Materials in Electronics, 29 (2018) 101-108.
[75] G. Zeng, S. D. McDonald, Q. Gu, Y. Terada, K. Uesugi, H. Yasuda, and K. Nogita, The influence of Ni and Zn additions on microstructure and phase transformations in Sn-0.7Cu/Cu solder joints, Acta Materialia, 83 (2015) 357-371.
[76] H. Tsukamoto, Z. Dong, H. Huang, T. Nishimura, and K. Nogita, Nanoindentation characterization of intermetallic compounds formed between Sn-Cu (-Ni) ball grid arrays and Cu substrates, Materials Science and Engineering: B, 164 (2009) 44-50.
[77] C194 Copper-Iron (CuFe2P), Fisk Alloy, Inc, (2024) (accessed 21 June 2024).
[78] Periodic Table contributors, Nickel-Electrical Resistivity and Electrical Conductivity, Periodic Table, (2020) (accessed 21 June 2024).
[79] H. P. R. Frederikse, R. J. Fields, and A. Feldman, Thermal and electrical properties of copper‐tin and nickel-tin intermetallics, J. Appl. Phys, 72 (1992) 2879-2882.