Basic Search / Detailed Display

Author: 簡辰宇
Thesis Title: 循環半批次轉酯反應器結合連續分離程序之模擬與開發
Modeling and Development of Cyclic Semi-Batch Transesterification Reactor Combined with a Continuous Separation Process
Advisor: 李豪業
Hao-Yeh Lee
Committee: 曾堯宣
Yao-Hsuan Tseng
Chenghsiu Yu
Degree: 碩士
Department: 工程學院 - 化學工程系
Department of Chemical Engineering
Thesis Publication Year: 2023
Graduation Academic Year: 112
Language: 中文
Pages: 100
Keywords (in Chinese): 半批次轉酯化循環分離
Keywords (in other languages): Semi-Batch, Transesterification, Cyclic, Separation
Reference times: Clicks: 54Downloads: 0
School Collection Retrieve National Library Collection Retrieve Error Report
  • 近年來為因應全球碳中和趨勢與工業 4.0 轉型,許多精細化學品、生技製藥等產業興起促進半批次製程建廠需求。然而,現今半批次製程在生產效率與操作穩定性方面,相較過往並無顯著提升。究其原因,主要為製程架構並未獲得升級。因此,開發具有類似連續生產特性的新型半批次製程,進而提升生產效率與操作穩定性,成為本研究主要目標。
    本研究針對轉酯化量產水性紫外光固化樹脂製程為主要探討程序。此類樹脂的反應系統具有高沸點成分、反應時間較長與反應平衡常數過小等特性,故只能採用半批次反應器生產。此外,生產過程中由於反應溫度高於反應物沸點,加上系統存在共沸物等影響,導致反應期間需純化與回收反應物,並通過回流至反應器的方式,確保反應持續往目標產物端進行。本研究依製程需求選用 14 種成分進行建模,由於部分成分缺少熱力學參數紀錄,故藉由 Aspen Plus® 內建之物性常數估算系統與網頁版熱力學計算機估算所需參數。動力學方面,經實驗結果發現於半批次反應操作下,能以偽二級不可逆反應動力式描述轉酯化反應。待熱力學與動力學模型皆驗證完畢後,使用 Aspen Plus® 建立模擬所需單元並於 Aspen Plus DynamicsTM 整合各單元建立整廠模型。
    透過半批次反應器彼此卸料與填料時間相互交疊的循環操作策略可減少閒置時間仿造出連續生產的情境,反應器氣相出料於該策略下形成連續式物流,使後端分離程序不再受到半批次反應器啟動和終止而連帶開俥與停俥。模擬結果顯示,連續式分離程序純化後的反應物與副產物純度皆高於 99.5 wt%。生產過程中,持續將副產物從製程移除而反應物與目標產物則迴流至反應器,確保反應持續往目標產物端進行。另外,於反應器卸料前加入升溫步驟去除反應溶液中低沸點成分,降低後續產品純化難度。最終,反應溶液中水性紫外光固化樹脂純度合計高達 90 wt% 以上。該製程相較過往半批次製程具有類似連續式生產的特性,且分離共沸物與回收剩餘反應物和目標產物的能力可增加該製程應用範圍。

    In recent years, in response to the global carbon neutrality trend and the Industry 4.0 transformation, the emergence of industries such as fine chemicals and biopharmaceuticals has stimulated the demand for establishing facilities for semi-batch processes. However, the current semi-batch processes have not shown significant improvement in terms of production efficiency and operational stability compared to the past. The primary reason lies in the lack of upgrades in the process architecture. Therefore, developing a new type of semi-batch process with characteristics resembling continuous production to enhance production efficiency and operational stability has become the main objective of this study.
    This study focuses on the process of producing water-based UV-curable resins through transesterification in large quantities. The reaction system of such resins includes characteristics like high boiling point components, longer reaction times, and excessively small reaction equilibrium constants, necessitating production through semi-batch reactors. Furthermore, due to the reaction temperature being higher than the boiling point of reactants and the presence of azeotropes in the system, it leads to the purification and recovery of reactants during the reaction period. This is ensured by recycling back into the reactor to ensure continuous progression toward the desired product. For this study, 14 components were selected for modeling based on process requirements. As some components lack thermodynamic parameter records, Aspen Plus®'s built-in physical property estimation system and a web-based thermodynamic calculator were used to estimate the required parameters.
    Regarding kinetics, experimental results reveal that transesterification reactions can be described by a pseudo-second-order irreversible reaction kinetics equation under semi-batch reaction operations. Once both thermodynamic and kinetic models were verified, Aspen Plus® was utilized to establish simulation units and integrate them using Aspen Plus DynamicsTM to form the entire plant model.
    By employing a cyclic operational strategy where unloading and loading times of semi-batch reactors overlap, idle time is reduced, mimicking a scenario of continuous production. The gas-phase reactor outlet forms a continuous flow under this strategy, allowing the downstream separation process not to be affected by the starting and stopping of semi-batch reactors. Simulation results demonstrate that the purified products from the continuous separation process exhibit purities exceeding 99.5 wt% for both reactants and by-products. Throughout the production process, continual removal of by-products from the process occurs while reactants and target products are recycled back into the reactor, ensuring continuous progression towards the desired products. Additionally, introducing a temperature increase step before unloading the reactor removes low boiling point components from the reaction solution, reducing the difficulty of subsequent product purification. Finally, the combined purity of water-based UV-curable resin in the reaction solution exceeds 90 wt%. Compared to previous semi-batch processes, this process exhibits characteristics similar to continuous production, and its ability to separate azeotropes and recover residual reactants and target products expands the application range of this process.

    誌謝 I 摘要 II Abstract III 目錄 V 圖目錄 VII 表目錄 XI 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 2 1.3 研究動機與目的 14 1.4 組織章節 15 第二章 熱力學與動力學模型建立 16 2.1 研究流程 16 2.2 熱力學模型 17 2.2.1 物性參數來源與熱力學模型選擇 17 2.2.2 熱力學參數驗證 20 2.3 動力學模型 22 2.3.1 轉酯化反應動力式 22 2.3.2 反應動力式參數迴歸 24 第三章 整廠模型建立 27 3.1 製程說明 27 3.2 反應器操作條件 30 3.3 反應器控制架構與操作策略 31 3.4 閃蒸罐串聯模組 34 3.5 簡單蒸餾塔與回收儲槽 34 3.6 萃取蒸餾程序與 MA 儲槽 36 3.7 建模流程與動態模型回流連接 41 3.8 整廠控制架構 44 3.8.1 前言 44 3.8.2 庫存控制環路 44 3.8.3 品質控制環路 48 第四章 動態模擬結果與設計參數影響 54 4.1 動態模擬結果 54 4.2 MA 流失率與回收率 64 4.3 設計參數對系統之影響 65 4.3.1 前言 65 4.3.2 調整反應物填充量 65 4.3.3 調整反應時間 77 第五章 結論與未來展望 88 5.1 結論 88 5.2 未來展望 90 參考文獻 91 附錄 93

    1. Arifin, S., & Chien, I.-L. (2008). Design and Control of an Isopropyl Alcohol Dehydration Process via Extractive Distillation Using Dimethyl Sulfoxide as an Entrainer. Industrial & Engineering Chemistry Research, 47(3), 790–803.
    2. Chen, C.-L., Chung, Y.-H., & Lee, H.-Y. (2016). Design and Control of Reactive Distillation Process for the Production of Methyl Valerate. Industrial & Engineering Chemistry Research, 55(5), 1347–1360.
    3. Dai, S.-B., Lee, H.-Y., & Chen, C.-L. (2019). Design and Economic Evaluation for the Production of Ethyl Lactate via Reactive Distillation Combined with Various Separation Configurations. Industrial & Engineering Chemistry Research, 58(15), 6121–6132
    4. Dreimann, J. M., Warmeling, H., Weimann, J. N., Künnemann, K., Behr, A., & Vorholt, A. J. (2016). Increasing selectivity of the hydroformylation in a miniplant: Catalyst, solvent, and olefin recycle in two loops. AIChE Journal, 62(12), 4377–4383.
    5. Kaiser, N. M., Jokiel, M., McBride, K., Flassig, R. J., & Sundmacher, K. (2017). Optimal Reactor Design via Flux Profile Analysis for an Integrated Hydroformylation Process. Industrial & Engineering Chemistry Research, 56(40), 11507–11518.
    6. Kiedorf, G., Hoang, D. M., Müller, A., Jörke, A., Markert, J., Arellano-Garcia, H., Seidel-Morgenstern, A., & Hamel, C. (2014). Kinetics of 1-dodecene hydroformylation in a thermomorphic solvent system using a rhodium-biphephos catalyst. Chemical Engineering Science, 115, 31–48.
    7. Luyben, W. L. (2004). Alternative Control Structures for Distillation Columns with Partial Condensers. Industrial & Engineering Chemistry Research, 43(20), 6416–6429.
    8. Luyben, W. L. (2012). Realistic Models for Distillation Columns with Partial Condensers Producing Both Liquid and Vapor Products. Industrial & Engineering Chemistry Research, 51(24), 8334–8339.
    9. Qiu, Z. Y. (2023). Study on Synthesis of Vinyloxy Ethoxy Ethyl Acrylate via Transesterification Reaction, Master dissertation, National Taiwan University of Science and Technology.
    10. Ryu, H., & Lee, J. M. (2016). Model Predictive Control (MPC)-Based Supervisory Control and Design of Off-Gas Recovery Plant with Periodic Disturbances from Parallel Batch Reactors. Industrial & Engineering Chemistry Research, 55(11), 3013–3025.
    11. Rätze, K. H. G., Jokiel, M., Kaiser, N. M., & Sundmacher, K. (2019). Cyclic operation of a semi-batch reactor for the hydroformylation of long-chain olefins and integration in a continuous production process. Chemical Engineering Journal, 377, 120453.
    12. Tsai, C. C. (2022). Development of first principle Thermophysical property Estimator for Process Simulators, Doctoral dissertation, National Taiwan University.
    13. Yurugi, K.; Yamaguchi, H. (Nippon Shokubai Co., Ltd., Osaka JP). U.S. Pantent 7368594 B2, May 6, 2008.
    1. 陳麒銘(2018)。鄰苯二甲酸二丁酯製程之模擬與最適化,碩士論文,國立臺北科技大學。

    無法下載圖示 Full text public date 2034/06/07 (Intranet public)
    Full text public date This full text is not authorized to be published. (Internet public)
    Full text public date This full text is not authorized to be published. (National library)