簡易檢索 / 詳目顯示

研究生: 紀昆穎
Kun-Ying Ji
論文名稱: 預測型控制應用於碳化矽為基礎的永磁同步電動機驅動系統研製
Design and Implementation of Predictive Controllers for SiC-based IPMSM Drive Systems
指導教授: 劉添華
Tian-Hua Liu
口試委員: 徐國鎧
楊勝明
楊士進
陳偉倫
劉添華
學位類別: 碩士
Master
系所名稱: 產學創新學院 - 能源永續科技研究所
Energy & Sustainability Tech
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 121
中文關鍵詞: 碳化矽功率元件預測型控制器永磁同步電動機
外文關鍵詞: silicon carbide device, predictive controllers, IPMSM
相關次數: 點閱:88下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討寬能隙碳化矽為基礎的永磁同步電動機驅動系統的研製,以便減少切換損失及導通損失,增進效率,及提升效能。
    為了改善電動機的暫態響應、加載性能及減少定子繞組的電流諧波,本文探討預測型速度控制器及預測型電流控制器應用於所研製的驅動系統。實測結果說明預測型控制器具有較比例積分控制器更為優越的性能。
    本文中使用數位訊號處理器TMS320F28035做為控制核心,達成相關的控制法則,配合硬體電路可以達到10轉/分~1800轉/分的控速範圍,故本文研製驅控系統的控速比為180:1。實驗結果驗證本文提出方法的正確性及可行性,並說明預測型控制器無論在暫態下或穩態下均具有優越的性能。


    This thesis investigates a wide-bandgap silicon-carbide based IPMSM drive system, to reduce the switching loss and conduction loss, increase its efficiency, and improve its performance as well.
    In order to improve the transient responses, load disturbance responses, and harmonic currents of the stator, this thesis proposes a predictive speed controller and a predictive current controller for the IPMSM drive system. Experimental results show the predictive controllers provide better performance than the PI controllers.
    A digital signal processor, TMS320F28035, is used as the control center to execute the control algorithms. By using the implementing hardware and DSP programs, the adjustable speed of the proposed IPMSM drive system is from 10 r/min to 1800 r/min, which shows the adjustable speed range is 180:1. Experimental results verify the correctness and feasibility of the proposed methods, and show the predictive controllers provide satisfactory performance.

    中文摘要 I Abstract II 目錄 III 圖目錄 VI 表目錄 X 符號索引 XI 第一章 緒論 1 1.1 動機 1 1.2 文獻回顧 3 1.2.1 永磁同步電動機設計 3 1.2.2 變頻器設計 3 1.2.3 電動機控制方法 4 1.3 本文貢獻 4 1.4 大綱 5 第二章 永磁同步電動機 6 2.1 簡介 6 2.2 構造與特性 6 2.2.1 轉子磁鐵 6 2.2.2 定子線圈 7 2.3 數學模式 11 第三章 碳化矽元件 18 3.1 簡介 18 3.2 特性及原理 18 3.2.1 碳化矽特性 18 3.2.2 米勒平台 19 3.2.3 導通損失與切換損失分析 20 3.3 元件比較 24 3.4 變頻器 25 3.5 脈波寬度調變方法 30 第四章 預測型控制器 31 4.1 簡介 31 4.2 基本原理 31 4.3 預測型速度控制器 31 4.4 預測型電流控制器 44 第五章 系統研製 51 5.1 簡介 51 5.2 硬體電路 52 5.2.1 橋式整流電路 53 5.2.2 電源電路 54 5.2.3 變頻器電路 55 5.2.4 閘極驅動電路 56 5.2.5 電流偵測電路 57 5.2.6 電壓偵測電路 59 5.2.7 過電流保護電路 60 5.2.8 編碼器電路 62 5.2.9 數位訊號處理器 63 5.3 軟體程式 64 5.3.1 主程式 64 5.3.2 中斷程式 66 第六章 實測結果 68 6.1 簡介 68 6.2 實測結果 70 第七章 結論及未來研究方向 99 參考文獻 100

    [1] S. J. Bader, H. J. Lee, R. Chaudhuri, S. M. Huang, A. Hickman, A. Molnar, H. G. Xing, D. Jena, H. W. Then, N. Chowdhury, and T. Palacios, “Prospects for wide bandgap and ultrawide bandgap CMOS devices,” IEEE Transactions on Electron Devices, vol. 67, no. 10, pp. 4010-4020, 2020.
    [2] H. Wen, D. Jiao, C. S. Yeh, and J. S. Lai, “Channel turn-off energy model for zero-voltage-switching wide bandgap devices,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 9, no. 4, pp. 4016-4025, 2021.
    [3] Z. Chen and A. Q. Huang, “High performance SiC power module based on repackaging of discrete SiC devices,” IEEE Transactions on Power Electronics, vol. 38, no. 8, pp. 9306-9310, 2023.
    [4] J. Biela, M. Schweizer, S. Waffler, and J. W. Kolar, “SiC versus Si—evaluation of potentials for performance improvement of snverter and DC–DC converter systems by SiC power semiconductors,” IEEE Transactions on Industrial Electronics, vol. 58, no. 7, pp. 2872-2882, 2011.
    [5] Y. S. Lin, K. W. Hu, T. H. Yeh, and C. M. Liaw, “An electric-vehicle IPMSM drive with interleaved front-end DC/DC converter,” IEEE Transactions on Vehicular Technology, vol. 65, no. 6, pp. 4493-4504, 2016.
    [6] S. O. Ramon, H. G. Victor Manuel, A. C. Mayra, and M. C. Daniel “DC/DC buck power converter as a smooth starter for a DC motor based on a hierarchical control,” IEEE Transactions on Power Electronics, vol. 30, no. 2, pp. 1076-1084, 2015.
    [7] C. G. Heo, H. M. Kim, and G. S. Park, “A design of rotor bar inclination in squirrel cage induction motor,” IEEE Transactions on Magnetics, vol. 53, no. 11, pp. 1-4, 2017.
    [8] B. M. Ebrahimi and J. Faiz, “Demagnetization fault diagnosis in surface mounted permanent magnet synchronous motors,” IEEE Transactions on Magnetics, vol. 49, no. 3, pp. 1185-1192, 2013.
    [9] S. H. Kim and J. K. Seok, “Maximum voltage utilization of IPMSMs using modulating voltage scalability for automotive applications,” IEEE Transactions on Power Electronics, vol. 28, no. 12, pp. 5639-5646, 2013.
    [10] T. Q. Yuan, D. Z. Wang, X. H. Wang, X. X. Wang, and Z. A. Sun, “High-precision servo control of industrial robot driven by PMSM-DTC utilizing composite active vectors,” IEEE Access, vol. 7, no., pp. 7577-7587, 2019.
    [11] M. Zbynek, V. Libor, and V. Pavel, “PMSM model predictive control with field-weakening implementation,” IEEE Transactions on Industrial Electronics, vol. 63, no. 8, pp. 5156-5166, 2016.
    [12] S. Bolognani, S. Bolognani, L. Peretti, and M. Zigliotto, “Design and implementation of model predictive control for electrical motor drives,” IEEE Transactions on Industrial Electronics, vol. 56, no. 6, pp. 1925-1936, 2009.
    [13] H. C. Liu, H. J. Lee, H. S. Seol, S. Y. Cho, J. Lee, and Y. J. Oh, “Optimal slot design of IPMSM in railway with independently rotating wheelsets,” IEEE Transactions on Magnetics, vol. 55, no. 2, pp. 1-4, 2019.

    [14] S. U. Chung, J.W. Kim, Y.D. Chun, B.C. Woo, and D.K. Hong, “Fractional slot concentrated winding PMSM with consequent pole rotor for a low-speed direct drive: reduction of rare earth permanent magnet,” IEEE Transactions on Energy Conversion, vol. 30, no. 1, pp. 103-109, 2015.
    [15] C. L. Jeong, Y. K. Kim, and J. Hur, “Optimized design of PMSM with hybrid-type permanent magnet for improving performance and reliability,” IEEE Transactions on Industry Applications, vol. 55, no. 5, pp. 4692-4701, 2019.
    [16] A. Kanale, A. Agarwal, B. J. Baliga, and S. Bhattacharya, “Monolithic reverse blocking 1.2 kV 4H-SiC power transistor: a novel, single-chip, three-terminal device for current source inverter applications,” IEEE Transactions on Power Electronics, vol. 37, no. 9, pp. 10112-10116, 2022.
    [17] M. Ekstrom, B. G. Malm, and C. M. Zetterling, “High-temperature recessed channel SiC CMOS inverters and ring oscillators,” IEEE Electron Device Letters, vol. 40, no. 5, pp. 670-673, 2019.
    [18] W. Wang, Q. Song, S. Zhang, Y. T. Li, M. Ahmad, and Y.S. Gong, “The loss analysis and efficiency optimization of power inverter based on SiC MOSFETs under the high-switching frequency,” IEEE Transactions on Industry Applications, vol. 57, no. 2, pp. 1521-1534, 2021.
    [19] E. Gurpinar and A. Castellazzi, “Single-phase T-type inverter performance benchmark using Si IGBTs, SiC MOSFETs and GaN HEMTs,” IEEE Transactions on Power Electronics, vol. 31, no. 10, pp. 7148-7160, 2016.

    [20] J. Ackermann and V. Utkin, “Sliding mode control design based on Ackermann's formula,” IEEE Transactions on Automatic Control, vol. 43, no. 2, pp. 234-237, 1998.
    [21] X. G. Zhang and Z. W. Wang, “Simple robust model predictive current control for PMSM drives without flux-linkage parameter,” IEEE Transactions on Industrial Electronics, vol. 70, no. 4, pp. 3515-3524, 2023.
    [22] A. Formentini, A. Trentin, M. Marchesoni, P. Zanchetta, and P. Wheeler, “Speed finite control set model predictive control of a PMSM fed by matrix converter,” IEEE Transactions on Industrial Electronics, vol. 62, no. 11, pp. 6786-6796, 2015.
    [23] L. P. Wang, S. Chai, D. Yoo, L. Gan, and K. Ng,“PID and Predictive Control of Electrical Drives and Power Converters using Matlab®/Simulink®,“, Wiley, 2014.
    [24] R. Jose and C. Patricio,“Predictive Control of Power Converters and Electrical Drives,“ Wiley, 2012.
    [25] P. M. Lindh, H. K. Jussila, M. Niemela, A. Parviainen, and J. Pyrhonen, “Comparison of concentrated winding permanent magnet motors with embedded and surface-mounted rotor magnets,” IEEE Transactions on Magnetics, vol. 45, no. 5, pp. 2085-2089, 2009.
    [26] T. Hara, T. Ajima, K. Hoshino, and A. Ashida, “Carrier electromagnetic vibration of DC voltage fluctuation in permanent-magnet synchronous motor with distributed winding,” IEEE Transactions on Industry Applications, vol. 56, no. 5, pp. 4623-4631, 2020.

    [27] Z. J. Li, J. Wang, B. Ji, and Z. J. Shen, “Power loss model and device sizing optimization of Si/SiC hybrid switches,” IEEE Transactions on Power Electronics, vol. 35, no. 8, pp. 8512-8523, 2020.
    [28] N. Mohan, T. M. Undeland, and W. P. Robbins,“Power electronics : converters, applications, and design,“ Wiley, 2003.
    [29] Y. C. Zhang, D. L. Xu, J. L. Liu, S. Y. Gao, and W. Xu, “Performance improvement of model-predictive current control of permanent magnet synchronous motor drives,” IEEE Transactions on Industry Applications, vol. 53, no. 4, pp. 3683-3695, 2017.
    [30] Y. F. Zhang and R. Qi, “High-efficiency flux weakening drive for IPMSM based on model predictive control,” IEEE Transactions on Transportation Electrification, vol. 8, no. 3, pp. 3503-3511, 2022.
    [31] B. C. Kuo,“Automatic Control Systems,“ Prentice Hall PTR, 1987.
    [32] M. Sachin, M. Krishna, T. Awneesh, P. Dhaval, K. Arun, B. Subhashish, and H. Kamalesh, “Harmonic analysis and controller design of 15 kV SiC IGBT-based medium-voltage grid-connected three-phase three-level NPC converter,” IEEE Transactions on Power Electronics, vol. 32, no. 5, pp. 3355-3369, 2017.

    QR CODE