簡易檢索 / 詳目顯示

研究生: 賴厚任
Hou-Jen Lai
論文名稱: 理論計算應用於銥金屬催化劑在二氧化鈦載體上之產氫研究以及提升硫化物固態電解質水氣穩定性
Theoretical Analysis on Low-Temperature Hydrogen Production over TiO2-Supported Iridium Catalysts and Enhancing the Moisture Stability of Sulfide-based Solid-State Electrolyte
指導教授: 江志強
Jyh-Chiang Jiang
口試委員: 林昇佃
吳溪煌
蔡明剛
郭哲來
游文岳
江志強
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 102
中文關鍵詞: 密度泛函理論甲烷蒸氣重整水煤氣轉化
外文關鍵詞: DFT calculations, Steam Methane Reforming, Water Gas Shift
相關次數: 點閱:50下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著現代生活的進步,能源在全球進步中扮演關鍵的推動力,在人類日常活動中扮演至關重要的角色。因此,各國的永續能源對策都強調以再生資源為基礎的綠色、低碳、安全和清潔系統。氫氣因為能量密度高且對環境友善,越來越多人把它視為發展替代能源的關鍵。然而,在綠色氫氣技術成熟之前,我們仍然必須仰賴透過天然氣生產的灰色氫氣,特別是隨著頁岩氣的大量開採。提升灰色氫氣的生產效率成為一個重要的挑戰。製造灰色氫氣的方法包括水煤氣變換反應(WGS)和甲烷蒸汽重整(SRM),這兩種方法需要大量能源以達到必要的反應溫度。因此,為了降低這些反應的溫度並提高製氫效率,高效催化劑的開發變得尤為重要。本博士論文使用密度泛函理論(density functional theory, DFT)來研究銥金屬催化劑在二氧化鈦載體上的WGS和SRM性能,並透過Ir4/TiO2和Ir1/TiO2表面模型分別模擬了二氧化鈦表面上的銥金屬團簇和單原子。研究結果顯示,銥金屬團簇在低溫下對WGS和SRM反應有著極高的活性,而銥金屬單原子因反應位點不足而導致較高的反應能障,只能在高溫下發揮作用。此外,我們透過微動力學模擬預測了各種產物形成的溫度,並成功地模擬出實驗觀察到的產物分佈,進一步證實了銥金屬催化劑在二氧化鈦載體上的優異活性。
    儘管氫氣在交通運輸中可以被當作能源,但其能量轉換效率始終無法與鋰離子電池(LIBs)相比。在先進電池技術中,全固態鋰電池(ASSLB)有望突破傳統鋰電池相關限制,是未來電池研究的關鍵方向。硫化物固態電解質因為離子導電性高的特點,在ASSLBs中扮演著關鍵角色。但由於硫化物固態電解質在含有水氣的環境下不穩定,容易產生有毒的H2S氣體,導致大規模生產受到局限。元素置換是硫化物電解質用來提升性能常用的方法之一,其伴隨的Li缺陷的生成,更是提高離子導電性的一個重要因素。然而,Li缺陷對硫化物電解質水氣穩定性的影響仍然沒有被報導過。因此,這篇論文的第二個目標就是用密度泛函理論來研究Li缺陷對硫化物固態電解質Li10SiP2S12水氣穩定性的影響。結果表明,當Li10SiP2S12表面存在Li缺陷時,生成H2S的能障提高,也代表Li10SiP2S12的水氣穩定性可以藉由創造表面Li缺陷來提升。鍵長分析和電子密度差異(EDD)計算也進一步證實了水氣穩定性的提高是因為Li缺陷的存在會使P-S鍵更加牢固。
    綜合而言,本研究深入探討了二氧化鈦載體上銥金屬催化劑在水煤氣轉移反應(WGS)和甲烷蒸汽重組反應(SRM)中的催化機制,為高效產氫提供了詳盡的解析。同時,透過對Li缺陷和硫化物固態電解質水氣穩定性相互關聯的研究,提供了對硫化物電解質性能特徵更為完整的理解,進一步深化了在這一領域的學術基礎。


    With the progression of modern life, energy emerges as a key driver of global progress, playing a vital role in enabling daily human activities. Consequently, nations worldwide are strategically opting for a sustainable energy paradigm that emphasizes green, low-carbon, safe, and clean systems rooted in renewable sources. Hydrogen energy, recognized for its efficiency and environmentally friendly attributes, is gaining growing research attention as a promising alternative energy carrier. Nevertheless, until the economic feasibility of large-scale production for green hydrogen is achieved, the hydrogen supply will persistently depend on grey hydrogen derived from natural gas, particularly with the substantial extraction of shale gas. The primary methods for producing hydrogen from natural gas are the water gas shift (WGS) and steam reforming of methane (SRM), both of which require significant energy investments to achieve the necessary reaction temperatures. Hence, this thesis focuses on the imperative task of developing an effective catalyst to reduce reaction temperatures for both WGS and SRM reactions, thereby increasing hydrogen production efficiency. This study has considered TiO2-supported Ir catalysts, evaluating their catalytic efficacy for WGS and SRM reactions through density functional theory (DFT) calculations. The study employs surface models of Ir4/TiO2 and Ir1/TiO2 to simulate small Ir clusters and isolated Ir atoms on the TiO2 surface, respectively. Notably, the present calculations reveal that the small Ir clusters exhibit higher activity in both the WGS and SRM reactions at low temperatures. On the other hand, single-Ir atoms contribute at high temperatures, primarily attributable to inadequate reaction sites, resulting in increased reaction barriers. Microkinetic simulations based on DFT calculations are used to predict the product formation temperatures. The simulations accurately replicate the observed product distribution from experimental analyses, thus validating the superior activity of the TiO2-supported Ir catalyst in this work.
    While hydrogen is a viable energy carrier in transportation, it faces persistent challenges in terms of low energy conversion efficiency compared to lithium-ion batteries (LIBs). In the pursuit of advancing battery technologies, all-solid-state lithium batteries (ASSLBs) present opportunities to overcome certain constraints associated with traditional LIBs, and represent a crucial direction in future battery technology. Sulfide-based solid electrolytes are essential components in ASSLBs due to their high Li-ion conductivity, but their practical applications are hindered by their poor chemical stability under moisture, leading to the generation of toxic H2S gas. The substitution of different elements in sulfide electrolytes is widely recognized as an effective strategy to enhance their properties. Besides, the formation of Li vacancies, accompanied by element substitution, is a key factor in enhancing Li-ion conductivity. However, the influence of Li vacancies on the moisture stability of sulfide electrolytes remains unexplored in existing literature. Consequently, the secondary goal of this thesis is to explore the influence of Li vacancies on the moisture stability of a sulfide solid electrolyte, specifically Li10SiP2S12, using DFT calculations. The DFT results highlighted that introducing a Li vacancy on the Li10SiP2S12 surface leads to an increased energy barrier for H2S formation and thereby improves moisture stability. Comprehensive bond length analysis and electron density difference (EDD) calculations further corroborate this enhanced moisture stability, emphasizing the strengthening of the P-S bond in the presence of Li vacancies.
    Overall, these findings offer crucial insights into the catalytic ability of TiO2-supported Ir catalysts, presenting a nuanced understanding of their efficacy in facilitating WGS and SRM reactions and contributing valuable insights into the interplay between Li vacancies and moisture stability, thereby advancing our comprehension of the performance characteristics of sulfide electrolytes.

    Contents 摘要 i Abstract iii 致謝 v Contents vi List of Figures viii List of Tables x Chapter 1. Introduction 1 1.1 Background 1 1.2 H2 Production 2 1.2.1 White and Orange Hydrogen 3 1.2.2 Green and Pink Hydrogen 4 1.2.3 Black and Brown Hydrogen 4 1.2.4 Grey and Blue Hydrogen 4 1.3 Water Gas Shift Reaction 5 1.3.1 High-Temperature WGS Catalysts 6 1.3.2 Low-Temperature WGS Catalysts 7 1.4 Steam Methane Reforming 10 1.4.1 Conventional catalyst for SRM reaction 10 1.4.2 Noble-metal catalysts for SRM reaction 12 1.4.3 Ir-based catalysts for SRM reaction 14 1.5 Solid-State Battery 18 1.5.1 Organic Polymer Electrolyte 19 1.5.2 Inorganic Ceramic Electrolyte 20 1.6 Present study 22 Chapter 2. Computational Details 24 2.1 DFT calculations 24 2.2 Surface Modelling 25 Chapter 3. Low-Temperature Water Gas Shift Reaction over Highly Dispersed Ir on TiO2 – Influence of Ir Dispersed State and Metal-Support Interface 29 3.1 Introduction 29 3.2 Results and Discussion 32 3.2.1 Modelling of the Ir Cluster and Ir Single Atom 32 3.2.2 CO and H2O Adsorption 35 3.2.3 WGS Reaction on Ir4/TiO2 (101) Surface 36 3.2.4 WGS Reaction on Ir1/TiO2 (101) Surface 38 3.2.5 In-situ DRIFTS and Frequency Analysis 42 3.2.6 WGS reaction on H2O Pre-covered Ir4/TiO2 (101) surface 46 3.2.7 H2 Production on Ir4/TiO2 (101) Surface 50 3.3 Conclusions 53 Chapter 4. Supported Iridium Clusters on TiO2: A Promising Catalyst for Methane Activation and Low-Temperature Steam Reforming of Methane 54 4.1 Introduction 54 4.2 Results and Discussion 57 4.2.1 Methane Activation 57 4.2.2 SRM reaction 60 4.2.3 SRM reaction on the Ir4/TiO2 (101) surface 61 4.2.4 SRM reaction on the Ir1/TiO2 (101) surface 66 4.2.5 Hydrogen Production Mechanism on the Ir1/TiO2 (101) surface 68 4.2.6 Microkinetic simulations 69 4.3 Conclusions 71 Chapter 5. Enhancing Moisture Stability of Li10SiP2S12 Solid Electrolyte: Insights into Surface Li Vacancy 72 5.1 Introduction 72 5.2 Results and Discussion 75 5.2.1 H2O Adsorption on the Li10SiP2S12 (101) surface 75 5.2.2 Hydrolysis Reaction on the Li10SiP2S12 (101) Surface 77 5.2.3 H2O adsorption on the v-Li10SiP2S12 (101) Surface 80 5.2.4 Hydrolysis Reaction on the v-Li10SiP2S12 (101) Surface 82 5.2.5 Bond Length and EDD Analysis 84 5.3 Conclusions 86 Chapter 6. Summary 87 References 89

    References
    1. Smil, V. Energy Transitions: Global and National Perspectives; ABC-CLIO, 2016.
    2. Energy Institute Statistical Review of World Energy. 2023, https://www.energyinst.org/statistical-review/
    3. Momirlan, M.; Veziroglu, T. N. Renew. Sust. Energ. Rev. 2002, 6 (1), 141-179.
    4. Veziroğlu, T. N.; Şahi˙n, S. Energy Convers. Manage. 2008, 49 (7), 1820-1831.
    5. Smil, V. Nature 1999, 400 (6743), 415-415.
    6. Seong-Sue, K.; Roman, C.; Hoyeon, K.; Seungkoo, L.; Changmin, P.; Myungsoo, H.; Joo-On, P.; Jinhong, P.; Hocheol, K.; Jinho, J.; et al. Progress in EUV lithography toward manufacturing. In Proc.SPIE, 2017; Vol. 10143, p 1014306. DOI: 10.1117/12.2264043.
    7. Sukkaew, P.; Danielsson, Ö.; Ojamäe, L. J. Phys. Chem. A 2018, 122 (9), 2503-2512.
    8. Withrow, S. P.; White, C. W.; Meldrum, A.; Budai, J. D.; Hembree, D. M., Jr.; Barbour, J. C. J. Appl. Phys. 1999, 86 (1), 396-401.
    9. Corp., S. True Colours: What Do the Different Colours of Hydrogen Mean? 2023, https://whatswatt.com.au/true-colours-what-do-the-different-colours-of-hydrogen-mean/.
    10. Klein, F.; Bach, W.; Jöns, N.; McCollom, T.; Moskowitz, B.; Berquó, T. Geochim. Cosmochim. Acta 2009, 73 (22), 6868-6893.
    11. Osselin, F.; Soulaine, C.; Fauguerolles, C.; Gaucher, E. C.; Scaillet, B.; Pichavant, M. Nat. Geosci. 2022, 15 (10), 765-769.
    12. Raman, R.; Nair, V. K.; Prakash, V.; Patwardhan, A.; Nedungadi, P. Energy Rep. 2022, 8, 9242-9260.
    13. Ajanovic, A.; Sayer, M.; Haas, R. Int. J. Hydrog. Energy 2022, 47 (57), 24136-24154.
    14. Baharudin, L.; James Watson, M. 2018, 34 (1), 43-72.
    15. Mendes, D.; Mendes, A.; Madeira, L. M.; Iulianelli, A.; Sousa, J. M.; Basile, A. Asia-Pac. J. Chem. Eng. 2010, 5 (1), 111-137.
    16. Chen, W. H.; Chen, C. Y. Appl. Energy 2020, 258, 114078.
    17. Baraj, E.; Ciahotný, K.; Hlinčík, T. Fuel 2021, 288, 119817.
    18. Yalcin, O.; Wachs, I. E.; Onal, I. Int. J. Hydrog. Energy 2021, 46 (33), 17154-17162.
    19. Rhodes, C.; Peter Williams, B.; King, F.; Hutchings, G. J. Catal. Commun. 2002, 3 (8), 381-384.
    20. Puig-Molina, A.; Cano, F. M.; Janssens, T. V. W. J. Phys. Chem. C 2010, 114 (36), 15410-15416.
    21. Lais, T.; Lukashuk, L.; van de Water, L.; Hyde, T. I.; Aramini, M.; Sankar, G. Phys. Chem. Chem. Phys. 2021, 23 (10), 5888-5896.
    22. Jin, Y.; Yang, H.; Yu, X.; Ren, P.; Yang, Y.; Xiang, H.; Li, Y.-W.; Jiao, H.; Wen, X. J. Phys. Chem. C 2022, 126 (14), 6241-6248.
    23. Rangel Costa, J. L. s.; Sérgio Marchetti, G.; do Carmo Rangel, M. Catal. Today 2002, 77 (3), 205-213.
    24. Zhu, M.; Wachs, I. E. Catal. Today 2018, 311, 2-7.
    25. de Araújo, G. C.; do Carmo Rangel, M. Catal. Today 2000, 62 (2), 201-207.
    26. de Souza, J. M. T.; do Carmo Rangel, M. React. Kinet. Catal. Lett. 2002, 77 (1), 29-34.
    27. de Souza, A. O.; do Carmo Rangel, M. React. Kinet. Catal. Lett. 2003, 79 (1), 175-180.
    28. Meshkani, F.; Rezaei, M.; Jafarbegloo, M. Mater. Res. Bull. 2015, 70, 229-235.
    29. Ariëns, M. I.; van de Water, L. G. A.; Dugulan, A. I.; Brück, E.; Hensen, E. J. M. ACS Catal. 2022, 12 (22), 13838-13852.
    30. Zhu, M.; Yalçın, Ö.; Wachs, I. E. Appl. Catal. B 2018, 232, 205-212.
    31. Popa, T.; Xu, G.; Barton, T. F.; Argyle, M. D. Appl. Catal. A: Gen. 2010, 379 (1), 15-23.
    32. Tanaka, Y.; Utaka, T.; Kikuchi, R.; Sasaki, K.; Eguchi, K. Appl. Catal. A: Gen. 2003, 242 (2), 287-295.
    33. Shishido, T.; Yamamoto, M.; Atake, I.; Li, D.; Tian, Y.; Morioka, H.; Honda, M.; Sano, T.; Takehira, K. J. Mol. Catal. A: Chem. 2006, 253 (1), 270-278.
    34. Ayastuy, J. L.; Gutiérrez-Ortiz, M. A.; González-Marcos, J. A.; Aranzabal, A.; González-Velasco, J. R. Ind. Eng. Chem. Res. 2005, 44 (1), 41-50.
    35. Ahn, S.-Y.; Kim, K.-J.; Kim, B.-J.; Shim, J.-O.; Jang, W.-J.; Roh, H.-S. Appl. Catal. B 2023, 325, 122320.
    36. Ginés, M. J. L.; Amadeo, N.; Laborde, M.; Apesteguía, C. R. Appl. Catal. A: Gen. 1995, 131 (2), 283-296.
    37. Fujitani, T.; Nakamura, J. Catal. Lett. 1998, 56 (2), 119-124.
    38. Chen, Y.; Lin, J.; Wang, X. Chem. Commun. 2022, 58 (2), 208-222.
    39. Yang, M.; Allard, L. F.; Flytzani-Stephanopoulos, M. J. Am. Chem. Soc. 2013, 135 (10), 3768-3771.
    40. Rodriguez, J. A.; Ramírez, P. J.; Asara, G. G.; Viñes, F.; Evans, J.; Liu, P.; Ricart, J. M.; Illas, F. Angew. Chem. Int. Ed. 2014, 53 (42), 11270-11274.
    41. Zhai, Y.; Pierre, D.; Si, R.; Deng, W.; Ferrin, P.; Nilekar, A. U.; Peng, G.; Herron, J. A.; Bell, D. C.; Saltsburg, H.; et al. Science 2010, 329 (5999), 1633-1636.
    42. Rodriguez, J. A.; Ma, S.; Liu, P.; Hrbek, J.; Evans, J.; Pérez, M. Science 2007, 318 (5857), 1757-1760.
    43. Fu, Q.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Science 2003, 301 (5635), 935-938.
    44. Song, W.; Hensen, E. J. M. ACS Catal. 2014, 4 (6), 1885-1892.
    45. Song, W.; Hensen, E. J. M. J. Phys. Chem. C 2013, 117 (15), 7721-7726.
    46. Yao, S.; Zhang, X.; Zhou, W.; Gao, R.; Xu, W.; Ye, Y.; Lin, L.; Wen, X.; Liu, P.; Chen, B.; et al. Science 2017, 357 (6349), 389-393.
    47. Zhang, X.; Zhang, M.; Deng, Y.; Xu, M.; Artiglia, L.; Wen, W.; Gao, R.; Chen, B.; Yao, S.; Zhang, X.; et al. Nature 2021, 589 (7842), 396-401.
    48. Lin, J.; Wang, A.; Qiao, B.; Liu, X.; Yang, X.; Wang, X.; Liang, J.; Li, J.; Liu, J.; Zhang, T. J. Am. Chem. Soc. 2013, 135 (41), 15314-15317.
    49. Schweitzer, N. M.; Schaidle, J. A.; Ezekoye, O. K.; Pan, X.; Linic, S.; Thompson, L. T. J. Am. Chem. Soc. 2011, 133 (8), 2378-2381.
    50. Zhu, X.; Shen, M.; Lobban, L. L.; Mallinson, R. G. J. Catal. 2011, 278 (1), 123-132.
    51. Liang, J.-X.; Lin, J.; Liu, J.; Wang, X.; Zhang, T.; Li, J. Angew. Chem. Int. Ed. 2020, 59 (31), 12868-12875.
    52. Sun, L.; Xu, J.; Liu, X.; Qiao, B.; Li, L.; Ren, Y.; Wan, Q.; Lin, J.; Lin, S.; Wang, X.; et al. ACS Catal. 2021, 11 (10), 5942-5950.
    53. Li, J.; Sun, L.; Wan, Q.; Lin, J.; Lin, S.; Wang, X. J. Phys. Chem. Lett. 2021, 12 (46), 11415-11421.
    54. Neumann, B.; Jacob, K. Z. Elektrochem. angew. phys. Chem. 1924, 30 (23-24), 557-576.
    55. Sun, L.; Wang, Y.; Guan, N.; Li, L. Energy Technol. 2020, 8 (8), 1900826.
    56. Zhang, H.; Sun, Z.; Hu, Y. H. Renew. Sust. Energ. Rev. 2021, 149, 111330.
    57. Boukha, Z.; Jiménez-González, C.; de Rivas, B.; González-Velasco, J. R.; Gutiérrez-Ortiz, J. I.; López-Fonseca, R. Appl. Catal. B 2014, 158-159, 190-201.
    58. Özdemir, H.; Faruk Öksüzömer, M. A.; Ali Gürkaynak, M. Int. J. Hydrog. Energy 2010, 35 (22), 12147-12160.
    59. Acha, E.; Requies, J.; Barrio, V. L.; Cambra, J. F.; Güemez, M. B.; Arias, P. L. Int. J. Hydrog. Energy 2010, 35 (20), 11525-11532.
    60. Hashemnejad, S. M.; Parvari, M. Chinese J. Catal. 2011, 32 (1), 273-279.
    61. Liu, C.-j.; Ye, J.; Jiang, J.; Pan, Y. ChemCatChem 2011, 3 (3), 529-541.
    62. Morales-Cano, F.; Lundegaard, L. F.; Tiruvalam, R. R.; Falsig, H.; Skjøth-Rasmussen, M. S. Appl. Catal. A: Gen. 2015, 498, 117-125.
    63. Yang, X.; Da, J.; Yu, H.; Wang, H. Fuel 2016, 179, 353-361.
    64. You, X.; Wang, X.; Ma, Y.; Liu, J.; Liu, W.; Xu, X.; Peng, H.; Li, C.; Zhou, W.; Yuan, P.; et al. ChemCatChem 2014, 6 (12), 3377-3386.
    65. Gonçalves, J. F.; Souza, M. M. V. M. Catal. Lett. 2018, 148 (5), 1478-1489.
    66. de Abreu, A. J.; Lucrédio, A. F.; Assaf, E. M. Fuel Process. Technol. 2012, 102, 140-145.
    67. Yamazaki, O.; Tomishige, K.; Fujimoto, K. Appl. Catal. A: Gen. 1996, 136 (1), 49-56.
    68. Park, Y. S.; Kang, M.; Byeon, P.; Chung, S.-Y.; Nakayama, T.; Ko, T.; Hwang, H. J. Power Sources 2018, 397, 318-324.
    69. Zhang, X.; Peng, L.; Fang, X.; Cheng, Q.; Liu, W.; Peng, H.; Gao, Z.; Zhou, W.; Wang, X. Int. J. Hydrog. Energy 2018, 43 (17), 8298-8312.
    70. Iglesias, I.; Baronetti, G.; Mariño, F. Int. J. Hydrog. Energy 2017, 42 (50), 29735-29744.
    71. Fang, X.; Zhang, X.; Guo, Y.; Chen, M.; Liu, W.; Xu, X.; Peng, H.; Gao, Z.; Wang, X.; Li, C. Int. J. Hydrog. Energy 2016, 41 (26), 11141-11153.
    72. Hiramitsu, Y.; Demura, M.; Xu, Y.; Yoshida, M.; Hirano, T. Appl. Catal. A: Gen. 2015, 507, 162-168.
    73. Xu, Y.; Harimoto, T.; Hirano, T.; Ohata, H.; Kunieda, H.; Hara, Y.; Miyata, Y. Int. J. Hydrog. Energy 2018, 43 (33), 15975-15984.
    74. Hirano, T.; Xu, Y. Int. J. Hydrog. Energy 2017, 42 (52), 30621-30629.
    75. Osaki, T.; Mori, T. J. Catal. 2001, 204 (1), 89-97.
    76. Znak, L.; Zieliński, J. Appl. Catal. A: Gen. 2012, 413-414, 132-139.
    77. Borowiecki, T.; Denis, A.; Rawski, M.; Gołębiowski, A.; Stołecki, K.; Dmytrzyk, J.; Kotarba, A. Appl. Surf. Sci. 2014, 300, 191-200.
    78. Li, M.-R.; Lu, Z.; Wang, G.-C. Catal. Sci. Technol. 2017, 7 (16), 3613-3625.
    79. Ma, Y.; Wang, X.; You, X.; Liu, J.; Tian, J.; Xu, X.; Peng, H.; Liu, W.; Li, C.; Zhou, W.; et al. ChemCatChem 2014, 6 (12), 3366-3376.
    80. Tauster, S. J.; Fung, S. C.; Garten, R. L. J. Am. Chem. Soc. 1978, 100 (1), 170-175.
    81. Harshini, D.; Lee, D. H.; Jeong, J.; Kim, Y.; Nam, S. W.; Ham, H. C.; Han, J. H.; Lim, T.-H.; Yoon, C. W. Appl. Catal. B 2014, 148-149, 415-423.
    82. Jones, G.; Jakobsen, J. G.; Shim, S. S.; Kleis, J.; Andersson, M. P.; Rossmeisl, J.; Abild-Pedersen, F.; Bligaard, T.; Helveg, S.; Hinnemann, B.; et al. J. Catal. 2008, 259 (1), 147-160.
    83. Lee, H. C.; Potapova, Y.; Lee, D. J. Power Sources 2012, 216, 256-260.
    84. Simakov, D. S. A.; Luo, H. Y.; Román-Leshkov, Y. Appl. Catal. B 2015, 168-169, 540-549.
    85. Bartholomew, C. H. Appl. Catal. A: Gen. 2001, 212 (1), 17-60.
    86. Ashcroft, A. T.; Cheetham, A. K.; Green, M. L. H.; Vernon, P. D. F. Nature 1991, 352 (6332), 225-226.
    87. Rostrupnielsen, J. R.; Hansen, J. H. B. J. Catal. 1993, 144 (1), 38-49.
    88. Mark, M. F.; Maier, W. F. J. Catal. 1996, 164 (1), 122-130.
    89. Amjad, U.-E. S.; Vita, A.; Galletti, C.; Pino, L.; Specchia, S. Ind. Eng. Chem. Res. 2013, 52 (44), 15428-15436.
    90. Duarte, R. B.; Krumeich, F.; van Bokhoven, J. A. ACS Catal. 2014, 4 (5), 1279-1286.
    91. Wang, Y.; Chin, Y. H.; Rozmiarek, R. T.; Johnson, B. R.; Gao, Y.; Watson, J.; Tonkovich, A. Y. L.; Vander Wiel, D. P. Catal. Today 2004, 98 (4), 575-581.
    92. Kuznetsov, V. V.; Vitovsky, O. V.; Gasenko, O. A. J. Eng. Thermophys. 2009, 18 (3), 187-196.
    93. Duarte, R. B.; Nachtegaal, M.; Bueno, J. M. C.; van Bokhoven, J. A. J. Catal. 2012, 296, 86-98.
    94. Van Santen, R. A. Acc. Chem. Res. 2009, 42 (1), 57-66.
    95. Zhu, T.; van Grootel, P. W.; Filot, I. A. W.; Sun, S.-G.; van Santen, R. A.; Hensen, E. J. M. J. Catal. 2013, 297, 227-235.
    96. Cook, A. K.; Schimler, S. D.; Matzger, A. J.; Sanford, M. S. Science 2016, 351 (6280), 1421-1424.
    97. Cavaliere, V. N.; Wicker, B. F.; Mindiola, D. J. Chapter One - Homogeneous Organometallic Chemistry of Methane. In Advances in Organometallic Chemistry, Hill, A. F., Fink, M. J. Eds.; Vol. 60; Academic Press, 2012; pp 1-47.
    98. Li, H.; Fei, M.; Troiano, J. L.; Ma, L.; Yan, X.; Tieu, P.; Yuan, Y.; Zhang, Y.; Liu, T.; Pan, X.; et al. J. Am. Chem. Soc. 2023, 145 (2), 769-773.
    99. Li, M.; Shan, J.; Giannakakis, G.; Ouyang, M.; Cao, S.; Lee, S.; Allard, L. F.; Flytzani-Stephanopoulos, M. Appl. Catal. B 2021, 292, 120124.
    100. Wang, C.-C.; Siao, S. S.; Jiang, J.-C. J. Phys. Chem. C 2012, 116 (10), 6367-6370.
    101. Liu, Y.-C.; Yeh, C.-H.; Lo, Y.-F.; Nachimuthu, S.; Lin, S. D.; Jiang, J.-C. J. Catal. 2020, 385, 265-273.
    102. Nakagawa, K.; Ikenaga, N.; Suzuki, T.; Kobayashi, T.; Haruta, M. Appl. Catal. A: Gen. 1998, 169 (2), 281-290.
    103. Nakagawa, K.; Anzai, K.; Matsui, N.; Ikenaga, N.; Suzuki, T.; Teng, Y.; Kobayashi, T.; Haruta, M. Catal. Lett. 1998, 51 (3), 163-167.
    104. Nakagawa, K.; Suzuki, T.; Kobayashi, T.; Haruta, M. Chem. Lett. 1996, 25 (12), 1029-1030.
    105. Wei, J.; Iglesia, E. Angew. Chem. Int. Ed. 2004, 43 (28), 3685-3688.
    106. Wei, J.; Iglesia, E. Phys. Chem. Chem. Phys. 2004, 6 (13), 3754-3759.
    107. Mei, D.; Glezakou, V.-A.; Lebarbier, V.; Kovarik, L.; Wan, H.; Albrecht, K. O.; Gerber, M.; Rousseau, R.; Dagle, R. A. J. Catal. 2014, 316, 11-23.
    108. Postole, G.; Nguyen, T.-S.; Aouine, M.; Gélin, P.; Cardenas, L.; Piccolo, L. Appl. Catal. B 2015, 166-167, 580-591.
    109. Postole, G.; Girona, K.; Toyir, J.; Kaddouri, A.; Gélin, P. Fuel Cells 2012, 12 (2), 275-287.
    110. Cheah, S. K.; Massin, L.; Aouine, M.; Steil, M. C.; Fouletier, J.; Gélin, P. Appl. Catal. B 2018, 234, 279-289.
    111. Ziegler, M. S.; Trancik, J. E. Energ. Environ. Sci. 2021, 14 (4), 1635-1651.
    112. Armand, M.; Tarascon, J. M. Nature 2008, 451 (7179), 652-657.
    113. Ye, L.; Li, X. Nature 2021, 593 (7858), 218-222.
    114. Tan, D. H. S.; Chen, Y.-T.; Yang, H.; Bao, W.; Sreenarayanan, B.; Doux, J.-M.; Li, W.; Lu, B.; Ham, S.-Y.; Sayahpour, B.; et al. Science 2021, 373 (6562), 1494-1499.
    115. Goodenough, J. B.; Park, K.-S. J. Am. Chem. Soc. 2013, 135 (4), 1167-1176.
    116. Janek, J.; Zeier, W. G. Nat. Energy 2016, 1 (9), 16141.
    117. Li, J.; Ma, C.; Chi, M.; Liang, C.; Dudney, N. J. Adv. Energy. Mater. 2015, 5 (4), 1401408.
    118. Zhang, Y.; Jiang, J.; An, Y.; Wu, L.; Dou, H.; Zhang, J.; Zhang, Y.; Wu, S.; Dong, M.; Zhang, X.; et al. ChemSusChem 2020, 13 (10), 2522-2539.
    119. Aravindan, V.; Gnanaraj, J.; Lee, Y.-S.; Madhavi, S. Chem. Rev. 2014, 114 (23), 11619-11635.
    120. Bocharova, V.; Sokolov, A. P. Macromolecules 2020, 53 (11), 4141-4157.
    121. Fenton, D. E.; Parker, J. M.; Wright, P. V. Polymer 1973, 14 (11), 589.
    122. Wright, P. V. Br. Polym. J. 1975, 7 (5), 319-327.
    123. Zhu, Y.; Cao, J.; Chen, H.; Yu, Q.; Li, B. J. Mater. Chem. A 2019, 7 (12), 6832-6839.
    124. Bouchet, R.; Maria, S.; Meziane, R.; Aboulaich, A.; Lienafa, L.; Bonnet, J.-P.; Phan, T. N. T.; Bertin, D.; Gigmes, D.; Devaux, D.; et al. Nat. Mater. 2013, 12 (5), 452-457.
    125. Mindemark, J.; Lacey, M. J.; Bowden, T.; Brandell, D. Prog. Polym. Sci. 2018, 81, 114-143.
    126. Berthier, C.; Gorecki, W.; Minier, M.; Armand, M. B.; Chabagno, J. M.; Rigaud, P. Solid State Ion. 1983, 11 (1), 91-95.
    127. Buchheit, A.; Grünebaum, M.; Teßmer, B.; Winter, M.; Wiemhöfer, H.-D. J. Phys. Chem. C 2021, 125 (8), 4371-4378.
    128. Zhang, M.; Lei, C.; Zhou, T.; Song, S.; Paoprasert, P.; He, X.; Liang, X. ACS Appl. Mater. Inter. 2022, 14 (50), 55653-55663.
    129. Hu, P.; Chai, J.; Duan, Y.; Liu, Z.; Cui, G.; Chen, L. J. Mater. Chem. A 2016, 4 (26), 10070-10083.
    130. Langevin, S. A.; McGuire, M. M.; Le, N. Q.; Ragasa, E.; Hamann, T.; Ferguson, G.; Chung, C.; Domenico, J.; Ko, J. S. J. Mater. Chem. A 2022, 10 (37), 19972-19983.
    131. Rosenbach, D.; Krimalowski, A.; Erabhoina, H.; Thelakkat, M. J. Mater. Chem. A 2022, 10 (16), 8932-8947.
    132. Johansson, I. L.; Sångeland, C.; Uemiya, T.; Iwasaki, F.; Yoshizawa-Fujita, M.; Brandell, D.; Mindemark, J. ACS Appl. Energy Mater. 2022, 5 (8), 10002-10012.
    133. Jung, S.-K.; Gwon, H.; Kim, H.; Yoon, G.; Shin, D.; Hong, J.; Jung, C.; Kim, J.-S. Nat. Commun. 2022, 13 (1), 7638.
    134. Murugan, R.; Thangadurai, V.; Weppner, W. Angew. Chem. Int. Ed. 2007, 46 (41), 7778-7781.
    135. Riegger, L. M.; Schlem, R.; Sann, J.; Zeier, W. G.; Janek, J. Angew. Chem. Int. Ed. 2021, 60 (12), 6718-6723.
    136. Asano, T.; Sakai, A.; Ouchi, S.; Sakaida, M.; Miyazaki, A.; Hasegawa, S. Adv. Mater. 2018, 30 (44), 1803075.
    137. Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K.; et al. Nat. Mater. 2011, 10 (9), 682-686.
    138. Kato, Y.; Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.; Kanno, R. Nat. Energy 2016, 1 (4), 16030.
    139. Sun, Y.; Suzuki, K.; Hori, S.; Hirayama, M.; Kanno, R. Chem. Mater. 2017, 29 (14), 5858-5864.
    140. Bron, P.; Johansson, S.; Zick, K.; Schmedt auf der Günne, J.; Dehnen, S.; Roling, B. J. Am. Chem. Soc. 2013, 135 (42), 15694-15697.
    141. Mo, Y.; Ong, S. P.; Ceder, G. Chem. Mater. 2012, 24 (1), 15-17.
    142. Wang, Y.; Richards, W. D.; Ong, S. P.; Miara, L. J.; Kim, J. C.; Mo, Y.; Ceder, G. Nat. Mater. 2015, 14 (10), 1026-1031.
    143. Deiseroth, H.-J.; Kong, S.-T.; Eckert, H.; Vannahme, J.; Reiner, C.; Zaiß, T.; Schlosser, M. Angew. Chem. Int. Ed. 2008, 47 (4), 755-758.
    144. de Klerk, N. J. J.; Rosłoń, I.; Wagemaker, M. Chem. Mater. 2016, 28 (21), 7955-7963.
    145. Stamminger, A. R.; Ziebarth, B.; Mrovec, M.; Hammerschmidt, T.; Drautz, R. Chem. Mater. 2019, 31 (21), 8673-8678.
    146. Chen, S.; Xie, D.; Liu, G.; Mwizerwa, J. P.; Zhang, Q.; Zhao, Y.; Xu, X.; Yao, X. Energy Storage Mater. 2018, 14, 58-74.
    147. Kerman, K.; Luntz, A.; Viswanathan, V.; Chiang, Y.-M.; Chen, Z. J. Electrochem. Soc. 2017, 164 (7), A1731-A1744.
    148. Arnold, W.; Buchberger, D. A.; Li, Y.; Sunkara, M.; Druffel, T.; Wang, H. J. Power Sources 2020, 464, 228158.
    149. Bui, A. D.; Choi, S.-H.; Choi, H.; Lee, Y.-J.; Doh, C.-H.; Park, J.-W.; Kim, B. G.; Lee, W.-J.; Lee, S.-M.; Ha, Y.-C. ACS Appl. Energy Mater. 2021, 4 (1), 1-8.
    150. Zhu, Z.; Chu, I.-H.; Ong, S. P. Chem. Mater. 2017, 29 (6), 2474-2484.
    151. Kresse, G.; Hafner, J. Phys.Rev. B 1993, 47 (1), 558-561.
    152. Kresse, G.; Hafner, J. Phys.Rev. B 1994, 49 (20), 14251-14269.
    153. Kresse, G.; Furthmüller, J. Phys.Rev. B 1996, 54 (16), 11169-11186.
    154. Kresse, G.; Furthmüller, J. Comp. Mater. Sci. 1996, 6 (1), 15-50.
    155. Blöchl, P. E. Phys.Rev. B 1994, 50 (24), 17953-17979.
    156. Kresse, G.; Joubert, D. Phys.Rev. B 1999, 59 (3), 1758-1775.
    157. Klimeš, J.; Bowler, D. R.; Michaelides, A. Phys.Rev. B 2011, 83 (19), 195131.
    158. Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77 (18), 3865-3868.
    159. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132 (15), 154104.
    160. Grimme, S.; Ehrlich, S.; Goerigk, L. J. Comput. Chem. 2011, 32 (7), 1456-1465.
    161. Henkelman, G.; Uberuaga, B. P.; Jónsson, H. J. Chem. Phys. 2000, 113 (22), 9901-9904.
    162. Baldini, E.; Chiodo, L.; Dominguez, A.; Palummo, M.; Moser, S.; Yazdi-Rizi, M.; Auböck, G.; Mallett, B. P. P.; Berger, H.; Magrez, A.; et al. Nat. Commun. 2017, 8 (1), 13.
    163. Monkhorst, H. J.; Pack, J. D. Phys.Rev. B 1976, 13 (12), 5188.
    164. Whiteley, J. M.; Woo, J. H.; Hu, E.; Nam, K.-W.; Lee, S.-H. J. Electrochem. Soc. 2014, 161 (12), A1812.
    165. Filot, I. A. W.; van Santen, R. A.; Hensen, E. J. M. Angew. Chem. Int. Ed. 2014, 53 (47), 12746-12750.
    166. Filot, I. A. W.; Broos, R. J. P.; van Rijn, J. P. M.; van Heugten, G. J. H. A.; van Santen, R. A.; Hensen, E. J. M. ACS Catal. 2015, 5 (9), 5453-5467.
    167. Filot, I. A. W.; Zijlstra, B.; Hensen, E. J. M. 2018.
    168. Fao, G. D.; Jiang, J.-C. Mol. Catal. 2022, 526, 112402.
    169. Nachimuthu, S.; Chen, T.-R.; Yeh, C.-H.; Hong, L.-S.; Jiang, J.-C. J. Phys. Chem. Lett. 2021, 12 (19), 4558-4568.
    170. Yeh, C.-H.; Ji, B.-C.; Nachimuthu, S.; Jiang, J.-C. Appl. Surf. Sci. 2021, 539, 148244.
    171. Wigner, E. Trans. Faraday Society 1938, 34 (0), 29-41.
    172. Garrett, B. C.; Truhlar, D. G. J. Phys. Chem. 1979, 83 (1), 200-203.
    173. Zhang, Y.; Rommel, J. B.; Cvitaš, M. T.; Althorpe, S. C. Phys. Chem. Chem. Phys. 2014, 16 (44), 24292-24300.
    174. Cao, X.-M.; Burch, R.; Hardacre, C.; Hu, P. Catal. Today 2011, 165 (1), 71-79.
    175. Laidler, K. J. 1969.
    176. Hanley, E. S.; Deane, J. P.; Gallachoir, B. P. O. Renew. Sust. Energ. Rev. 2018, 82, 3027-3045.
    177. Holladay, J. D.; Hu, J.; King, D. L.; Wang, Y. Catal Today 2009, 139 (4), 244-260.
    178. Navarro, R. M.; Pena, M. A.; Fierro, J. L. G. Chem. Rev. 2007, 107 (10), 3952-3991.
    179. Pal, D.; Chand, R.; Upadhyay, S.; Mishra, P. Renew. Sust. Energ. Rev. 2018, 93, 549-565.
    180. Cui, X.; Su, H.-Y.; Chen, R.; Yu, L.; Dong, J.; Ma, C.; Wang, S.; Li, J.; Yang, F.; Xiao, J.; et al. Nat. Commun. 2019, 10 (1), 86.
    181. Gokhale, A. A.; Dumesic, J. A.; Mavrikakis, M. J. Am. Chem. Soc. 2008, 130 (4), 1402-1414.
    182. Ratnasamy, C.; Wagner, J. P. Catal. Rev. - Sci. Eng. 2009, 51 (3), 325-440.
    183. LeValley, T. L.; Richard, A. R.; Fan, M. H. Int. J. Hydrog. Energy 2014, 39 (30), 16983-17000.
    184. Spori, C.; Kwan, J. T. H.; Bonakdarpour, A.; Wilkinson, D. P.; Strasser, P. Angew. Chem. Int. Ed. 2017, 56 (22), 5994-6021.
    185. Pham, T. L. M.; Nachimuthu, S.; Kuo, J. L.; Jiang, J. C. Appl. Catal. A: Gen. 2017, 541, 8-14.
    186. Cherevko, S.; Reier, T.; Zeradjanin, A. R.; Pawolek, Z.; Strasser, P.; Mayrhofer, K. J. J. Electrochem. Commun. 2014, 48, 81-85.
    187. Van Pham, C.; Buhler, M.; Knoppel, J.; Bierling, M.; Seeberger, D.; Escalera-Lopez, D.; Mayrhofer, K. J. J.; Cherevko, S.; Thiele, S. Appl. Catal. B 2020, 269.
    188. Liang, Z.; Li, T.; Kim, M.; Asthagiri, A.; Weaver, J. F. Science 2017, 356 (6335), 298-301.
    189. Bian, Y.; Kim, M.; Li, T.; Asthagiri, A.; Weaver, J. F. J. Am. Chem. Soc. 2018, 140 (7), 2665-2672.
    190. Pham, T. L. M.; Leggesse, E. G.; Jiang, J. C. Catal. Sci. Technol. 2015, 5 (8), 4064-4071.
    191. Wang, C. C.; Siao, S. S.; Jiang, J. C. J. Phys. Chem. C 2012, 116 (10), 6367-6370.
    192. Kim, M.; Franklin, A. D.; Martin, R.; Bian, Y.; Weaver, J. F.; Asthagiri, A. J. Catal. 2020, 383, 181-192.
    193. Qiao, B.; Wang, A.; Yang, X.; Allard, L. F.; Jiang, Z.; Cui, Y.; Liu, J.; Li, J.; Zhang, T. Nat. Chem. 2011, 3 (8), 634-641.
    194. Li, Z.; Ji, S.; Liu, Y.; Cao, X.; Tian, S.; Chen, Y.; Niu, Z.; Li, Y. Chem. Rev. 2019, 120 (2), 623-682.
    195. Chen, Y.; Lin, J.; Wang, X. D. Chem. Commun. 2021, 58 (2), 208-222.
    196. Liu, C.-Y.; Chang, C.-C.; Ho, J.-J.; Li, E. Y. J. Phys. Chem. C 2017, 121 (18), 9825-9832.
    197. Wen, C.; Zhu, Y.; Ye, Y. C.; Zhang, S. R.; Cheng, F.; Liu, Y.; Wang, P.; Tao, F. ACS Nano 2012, 6 (10), 9305-9313.
    198. Liu, H. X.; Li, S. Q.; Wang, W. W.; Yu, W. Z.; Zhang, W. J.; Ma, C.; Jia, C. J. Nat. Commun. 2022, 13 (1).
    199. Schilling, C.; Hess, C. ACS Catal. 2019, 9 (2), 1159-1171.
    200. Shekhar, M.; Wang, J.; Lee, W. S.; Williams, W. D.; Kim, S. M.; Stach, E. A.; Miller, J. T.; Delgass, W. N.; Ribeiro, F. H. J. Am. Chem. Soc. 2012, 134 (10), 4700-4708.
    201. Chiang, H.-N.; Jiang, J.-C. J. Phys. Chem. C 2013, 117 (23), 12045-12053.
    202. Liu, L.; Corma, A. Chem. Rev. 2018, 118 (10), 4981-5079.
    203. Ding, K.; Gulec, A.; Johnson, A. M.; Schweitzer, N. M.; Stucky, G. D.; Marks, L. D.; Stair, P. C. Science 2015, 350 (6257), 189-192.
    204. Fu, X. P.; Gno, L. W.; Wang, W. W.; Ma, C.; Jia, C. J.; Wu, K.; Si, R.; Sun, L. D.; Yan, C. H. J. Am. Chem. Soc. 2019, 141 (11), 4613-4623.
    205. Tang, H.; Su, Y.; Zhang, B.; Lee, A. F.; Isaacs, M. A.; Wilson, K.; Li, L.; Ren, Y.; Huang, J.; Haruta, M.; et al. Sci Adv 2017, 3 (10), e1700231.
    206. Erdo˝helyi, A.; Fodor, K.; Suru, G. Appl. Catal. A: Gen. 1996, 139 (1), 131-147.
    207. Chen, J.; Wang, X.; Zhang, L.; Rui, Z. Appl. Catal. B 2021, 297, 120410.
    208. Liu, Y.-C. C-H Activation and C-O Coupling of Methane using Ir Catalysts. Doctoral thesis, National Taiwan University of Science and Technology, 2018.
    209. Lai, H.-J.; Liu, Y.-C.; Nachimuthu, S.; Jiang, J.-C.; Lin, S. D. J. Phys. Chem. C 2023, 127 (25), 11986-11996.
    210. Hoffman, A. S.; Fang, C.-Y.; Gates, B. C. J. Phys. Chem. Lett. 2016, 7 (19), 3854-3860.
    211. Lu, J.; Serna, P.; Gates, B. C. ACS Catal. 2011, 1 (11), 1549-1561.
    212. Mihaylov, M.; Ivanova, E.; Thibault-Starzyk, F.; Daturi, M.; Dimitrov, L.; Hadjiivanov, K. J. Phys. Chem. B 2006, 110 (21), 10383-10389.
    213. Aguirre, A.; Barrios, C. E.; Aguilar-Tapia, A.; Zanella, R.; Baltanás, M. A.; Collins, S. E. Top. Catal. 2016, 59 (2), 347-356.
    214. Hadjiivanov, K.; Lamotte, J.; Lavalley, J.-C. Langmuir 1997, 13 (13), 3374-3381.
    215. Setvin, M.; Buchholz, M.; Hou, W.; Zhang, C.; Stöger, B.; Hulva, J.; Simschitz, T.; Shi, X.; Pavelec, J.; Parkinson, G. S.; et al. J. Phys. Chem. C 2015, 119 (36), 21044-21052.
    216. Mino, L.; Ferrari, A. M.; Lacivita, V.; Spoto, G.; Bordiga, S.; Zecchina, A. J. Phys. Chem. C 2011, 115 (15), 7694-7700.
    217. Li, X.; Haunold, T.; Werkovits, S.; Marks, L. D.; Blaha, P.; Rupprechter, G. J. Phys. Chem. C 2022, 126 (15), 6578-6589.
    218. Li, X.; Pramhaas, V.; Rameshan, C.; Blaha, P.; Rupprechter, G. J. Phys. Chem. C 2020, 124 (33), 18102-18111.
    219. Lauterbach, J.; Boyle, R. W.; Schick, M.; Mitchell, W. J.; Meng, B.; Weinberg, W. H. Surf Sci. 1996, 350 (1), 32-44.
    220. Dawes, A.; Mason, N. J.; Fraser, H. J. Phys. Chem. Chem. Phys. 2016, 18 (2), 1245-1257.
    221. Saavedra, J.; Doan, H. A.; Pursell, C. J.; Grabow, L. C.; Chandler, B. D. Science 2014, 345 (6204), 1599.
    222. Lubitz, W.; Tumas, W. Chem. Rev. 2007, 107 (10), 3900-3903.
    223. Kovač, A.; Paranos, M.; Marciuš, D. Int. J. Hydrog. Energy 2021, 46 (16), 10016-10035.
    224. Dawood, F.; Anda, M.; Shafiullah, G. M. Int. J. Hydrog. Energy 2020, 45 (7), 3847-3869.
    225. Abe, J. O.; Popoola, A. P. I.; Ajenifuja, E.; Popoola, O. M. Int. J. Hydrog. Energy 2019, 44 (29), 15072-15086.
    226. Aasberg-Petersen, K.; Dybkjær, I.; Ovesen, C. V.; Schjødt, N. C.; Sehested, J.; Thomsen, S. G. J Nat Gas Sci Eng 2011, 3 (2), 423-459.
    227. Rostrup-Nielsen, J. R.; Sehested, J.; Nørskov, J. K. Adv. Catal. 2002.
    228. Zhang, X.; Yim, K.; Kim, J.; Wu, D.; Ha, S. Appl. Catal. B 2022, 310, 121250.
    229. Salcedo, A.; Lustemberg, P. G.; Rui, N.; Palomino, R. M.; Liu, Z.; Nemsak, S.; Senanayake, S. D.; Rodriguez, J. A.; Ganduglia-Pirovano, M. V.; Irigoyen, B. ACS Catal. 2021, 11 (13), 8327-8337.
    230. Vogt, C.; Kranenborg, J.; Monai, M.; Weckhuysen, B. M. ACS Catal. 2020, 10 (2), 1428-1438.
    231. Rogers, J. L.; Mangarella, M. C.; D’Amico, A. D.; Gallagher, J. R.; Dutzer, M. R.; Stavitski, E.; Miller, J. T.; Sievers, C. ACS Catal. 2016, 6 (9), 5873-5886.
    232. Zhai, X.; Ding, S.; Liu, Z.; Jin, Y.; Cheng, Y. Int. J. Hydrog. Energy 2011, 36 (1), 482-489.
    233. Sehested, J. Catal. Today 2006, 111 (1), 103-110.
    234. Wei, J.; Iglesia, E. J. Catal. 2004, 224 (2), 370-383.
    235. Angeli, S. D.; Monteleone, G.; Giaconia, A.; Lemonidou, A. A. Int. J. Hydrog. Energy 2014, 39 (5), 1979-1997.
    236. Wang, Y.; Hu, P.; Yang, J.; Zhu, Y.-A.; Chen, D. Chem. Soc. Rev. 2021, 50 (7), 4299-4358.
    237. Li, Z.; Xiao, Y.; Chowdhury, P. R.; Wu, Z.; Ma, T.; Chen, J. Z.; Wan, G.; Kim, T.-H.; Jing, D.; He, P.; et al. Nat. Catal. 2021, 4 (10), 882-891.
    238. Song, H.; Meng, X.; Wang, Z.-j.; Wang, Z.; Chen, H.; Weng, Y.; Ichihara, F.; Oshikiri, M.; Kako, T.; Ye, J. ACS Catal. 2018, 8 (8), 7556-7565.
    239. Prieto, P. J. S.; Ferreira, A. P.; Haddad, P. S.; Zanchet, D.; Bueno, J. M. C. J. Catal. 2010, 276 (2), 351-359.
    240. Ashcroft, A. T.; Cheetham, A. K.; Foord, J. S.; Green, M. L. H.; Grey, C. P.; Murrell, A. J.; Vernon, P. D. F. Nature 1990, 344 (6264), 319-321.
    241. Kechagiopoulos, P. N.; Angeli, S. D.; Lemonidou, A. A. Appl. Catal. B 2017, 205, 238-253.
    242. Basile, F.; Basini, L.; Fornasari, G.; Gazzano, M.; Trifirò, F.; Vaccari, A. Anionic Clays as Precursors of Noble Metal Based Catalysts for Methane Activation. In Studies in Surface Science and Catalysis, Delmon, B., Jacobs, P. A., Maggi, R., Martens, J. A., Grange, P., Poncelet, G. Eds.; Vol. 118; Elsevier, 1998; pp 31-40.
    243. Lee, S.-Y.; Aris, R. Catal. Rev. - Sci. Eng. 1985, 27 (2), 207-340.
    244. Pham, T. L. M.; Nachimuthu, S.; Kuo, J.-L.; Jiang, J.-C. Appl. Catal. A: Gen. 2017, 541, 8-14.
    245. Liang, Z.; Li, T.; Kim, M.; Asthagiri, A.; Weaver, J. F. Science 2017, 356 (6335), 299-303.
    246. Kim, M.; Franklin, A. D.; Martin, R.; Bian, Y.; Weaver, J. F.; Asthagiri, A. J. Catal. 2020, 383, 181-192.
    247. Yeh, C.-H.; Pham, T. M. L.; Nachimuthu, S.; Jiang, J.-C. ACS Catal. 2019, 9 (9), 8230-8242.
    248. Miao, T. J.; Wang, C.; Xiong, L.; Li, X.; Xie, J.; Tang, J. ACS Catal. 2021, 11 (13), 8226-8238.
    249. Kho, E. T.; Scott, J.; Amal, R. Chem. Eng. Sci. 2016, 140, 161-170.
    250. Feng, N.; Lin, H.; Song, H.; Yang, L.; Tang, D.; Deng, F.; Ye, J. Nat. Commun. 2021, 12 (1), 4652.
    251. Yu, L.; Shao, Y.; Li, D. Appl. Catal. B 2017, 204, 216-223.
    252. Zhao, Q.; Liu, X.; Stalin, S.; Khan, K.; Archer, L. A. Nat. Energy 2019, 4 (5), 365-373.
    253. Choudhury, S.; Stalin, S.; Vu, D.; Warren, A.; Deng, Y.; Biswal, P.; Archer, L. A. Nat. Commun. 2019, 10 (1), 4398.
    254. Mishra, G. K.; Gautam, M.; Bhawana, K.; Chakrabarty, N.; Mitra, S. ACS Appl. Mater. Inter. 2023, 15 (8), 10629-10641.
    255. Whiteley, J. M.; Woo, J. H.; Hu, E.; Nam, K.-W.; Lee, S.-H. J. Electrochem. Soc. 2014, 161 (12), A1812-A1817.
    256. Nachimuthu, S.; Cheng, H. J.; Lai, H. J.; Cheng, Y. H.; Kuo, R.-T.; Zeier, W. G.; Hwang, B. J.; Jiang, J. C. Mater. Today Chem. 2022, 26, 101223.
    257. Muramatsu, H.; Hayashi, A.; Ohtomo, T.; Hama, S.; Tatsumisago, M. Solid State Ion. 2011, 182 (1), 116-119.
    258. Zhao, S.; Zhu, X.; Jiang, W.; Ji, Z.; Ling, M.; Wang, L.; Liang, C. Mater. Chem. Front. 2021, 5 (20), 7452-7466.
    259. Nikodimos, Y.; Huang, C.-J.; Taklu, B. W.; Su, W.-N.; Hwang, B. J. Energ. Environ. Sci. 2022, 15 (3), 991-1033.
    260. Sahu, G.; Lin, Z.; Li, J.; Liu, Z.; Dudney, N.; Liang, C. Energ. Environ. Sci. 2014, 7 (3), 1053-1058.
    261. Pearson, R. G. J. Chem. Educ. 1968, 45 (9), 581.
    262. Wang, Y.; Lü, X.; Zheng, C.; Liu, X.; Chen, Z.; Yang, W.; Lin, J.; Huang, F. Angew. Chem. Int. Ed. 2019, 58 (23), 7673-7677.
    263. Peng, L.; Chen, S.; Yu, C.; Wei, C.; Liao, C.; Wu, Z.; Wang, H.-L.; Cheng, S.; Xie, J. ACS Appl. Mater. Inter. 2022, 14 (3), 4179-4185.
    264. Kim, K.-H.; Martin, S. W. Chem. Mater. 2019, 31 (11), 3984-3991.
    265. Ahmad, N.; Zhou, L.; Faheem, M.; Tufail, M. K.; Yang, L.; Chen, R.; Zhou, Y.; Yang, W. ACS Appl. Mater. Inter. 2020, 12 (19), 21548-21558.
    266. Guo, Y.; Guan, H.; Peng, W.; Li, X.; Ma, Y.; Song, D.; Zhang, H.; Li, C.; Zhang, L. Solid State Ion. 2020, 358, 115506.
    267. Sun, Z.; Lai, Y.; lv, N.; Hu, Y.; Li, B.; Jiang, L.; Wang, J.; Yin, S.; Li, K.; Liu, F. ACS Appl. Mater. Inter. 2021, 13 (46), 54924-54935.
    268. Liang, J.; Chen, N.; Li, X.; Li, X.; Adair, K. R.; Li, J.; Wang, C.; Yu, C.; Norouzi Banis, M.; Zhang, L.; et al. Chem. Mater. 2020, 32 (6), 2664-2672.
    269. Jiang, Z.; Liu, Y.; Peng, H.; Li, J.; Xu, X.; Su, H.; Zhong, Y.; Wang, X.; Gu, C.; Tu, J. Energy Storage Mater. 2023, 56, 300-309.
    270. Restle, T. M. F.; Scherf, L.; Dums, J. V.; Mutschke, A. G.; Spranger, R. J.; Kirchhain, H.; Karttunen, A. J.; van Wüllen, L.; Fässler, T. F. Angew. Chem. Int. Ed. 2023, 62 (10), e202213962.
    271. Spannenberger, S.; Miß, V.; Klotz, E.; Kettner, J.; Cronau, M.; Ramanayagam, A.; di Capua, F.; Elsayed, M.; Krause-Rehberg, R.; Vogel, M.; et al. Solid State Ion. 2019, 341, 115040.
    272. Zubair, M.; Wang, L.; Wang, Y.; Zhang, X.; Guo, X.; Wu, T.; Wang, E.; Wang, B.; Yang, Y.; Yu, H. ACS Appl. Energy Mater. 2020, 3 (5), 4888-4895.
    273. de Klerk, N. J. J.; van der Maas, E.; Wagemaker, M. ACS Appl. Energy Mater. 2018, 1 (7), 3230-3242.
    274. Nikodimos, Y.; Su, W. N.; Bezabh, H. K.; Tsai, M. C.; Yang, C. C.; Hwang, B. J. Mater. Today Chem. 2022, 24, 100837.
    275. Spannenberger, S.; Miß, V.; Klotz, E.; Kettner, J.; Cronau, M.; Ramanayagam, A.; di Capua, F.; Elsayed, M.; Krause-Rehberg, R.; Vogel, M.; et al. Solid State Ion. 2019, 341, 115040.

    無法下載圖示
    全文公開日期 2029/01/26 (校外網路)
    全文公開日期 2029/01/26 (國家圖書館:臺灣博碩士論文系統)
    QR CODE