簡易檢索 / 詳目顯示

研究生: 邱彥傑
Yen-Chieh Chiu
論文名稱: 氮化鎵異質接面光電晶體的響應速度與光電特性量測
Response speed and optoelectronic characteristics of GaN based heterojunction phototransistors
指導教授: 葉秉慧
Pinghui Sophia Yeh
口試委員: 李奎毅
Kuei-Yi Lee 
李志堅
Chih-Chien Lee
蘇忠傑
Jung-Chieh Su
葉秉慧
Pinghui Sophia Yeh
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 118
中文關鍵詞: 光電晶體氮化鎵響應速度光電特性紫外光
外文關鍵詞: Phototransistors, Gallium nitride, Response speed, Optoelectronic, Ultra-violet
相關次數: 點閱:321下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文使用學長製作出的氮化鎵光電晶體光偵測器,量測出其暗電流(Dark current)、外部量子效應(EQE)、計算出響應率、響應時間、響應的雜訊以及不同光強度下的電壓訊號。量測的元件為n-p-i-n結構光電晶體光偵測器,以商業用LED結構晶圓(AlGaInN based),利用矽擴散的方式,將最上層的p-AlGaN反轉成n-AlGaN,使晶圓結構從原本的p-i-n結構變成n-p-i-n結構。
n-p-i-n光電晶體光偵測器的元件在峰值波長382 nm,入射光強度為15.6 μW/cm2,當逆向偏壓VCE為1 V時,峰值的外部量子效率可以達到大於16600%,對應的響應率大於51.4 A/W;當逆向偏壓VCE為3 V時,峰值的外部量子效率更可以達到大於38000%,對應的響應率大約為117.7 A/W,截止波長約為415 nm。對於響應時間的量測,我們在固定波長382 nm、頻率為5 Hz、逆向偏壓VCE為3 V時,量測到其上升時間(Rise time)為15.8 ms,下降時間(Fall time)為83.3 ms,對於大部分的應用都是可行的。因此我們使用商業用LED結構晶圓成功製作了UV-A光電晶體光偵測器,達到低成本、製程簡單的目的,並且可在低偏壓下得到相當高的響應率,證明這種設計是相當可行的。


In this paper, we characterized the GaN based phototransistors which made by seniors, including the dark current, external quantum efficiency (EQE), response speed, response time, noise of the phototransistor and the photocurrent versus incident light intensity. Instead of using a wafer with a bipolar junction transistor n–p–n epitaxial structure, we successfully fabricated AlGaInN-based near-ultraviolet (UV) heterojunction phototransistors (HPTs) on a commercial wafer with a light-emitting-diode (LED) epitaxial structure by employing silicon diffusion to convert a part of the p-AlGaN layer into an n-AlGaN layer.
The device was emitter-side illuminated using an incident light intensity of 15.6 μW/cm2 at the fixed wavelength of 382 nm at which the responsivity was the highest. The EQE and responsivity were approximately 16600% and 51.4 A/W when VCE was 1V at 382 nm, respectively. It then increased the V¬CE of up to approximately 3 V, the peak EQE value of 38000% at 382 nm, corresponding to a responsivity 117.7 A/W. The cutoff wavelength was approximately 415 nm which was determined by the minimum bandgap energy of the MQWs. The response speed of our HPT was illuminated with the same condition like EQE, and the VCE¬ was set at 3 V. The dominating factor affecting the response speed was the fall time, which was measured to be approximately 85 ms and the rise time was approximately 15.8 ms, which might be acceptable for most applications. The results implied the potential to integrate an LED with a phototransistor monolithically and cost effectively.

摘要I AbstractII 致謝III 目錄IV 圖目錄VIII 表目錄XIII 第一章導論1 1.1 緒論1 1.2 UV-A光電晶體偵測器文獻回顧與研究動機2 第二章光偵測器理論介紹13 2.1光偵測器的工作原理13 2.2光偵測器架構分類15 2.2.1 p-n接面光二極體(p-n photodiode)16 2.2.2 p-i-n接面光電二極體(p-i-n photodiode)18 2.2.3 蕭基位障光電二極體(Schottky barrier photodiode)23 2.2.4 雪崩型光二極體(Avalanche photodiode)24 2.2.5異質接面光二極體(Heterojunction photodiode)27 2.2.6 光電晶體(Phototransistor)29 2.2.7 光導體光偵測器(Photoconductive detector)30 2.3 光偵測器檢測參數33 2.3.1 量子效率(Quantum Efficiency, QE)33 2.3.2 響應率(Responsivity, R)35 2.3.3 響應速度(Response Speed)36 2.3.4 拒斥比(Rejection Ratio)37 2.3.5 雜訊等效功率(Noise Equivalent Power, NEP)37 2.3.6 歸一化檢測率(Normalized detectivity, D*)38 2.4 光偵測器的雜訊(Photodetector noise)38 2.4.1散粒雜訊(Shot noise)39 2.4.2熱雜訊(Thermal noise)40 2.4.3累崩雜訊(Avalanche noise)41 第三章 元件設計與儀器介紹43 3.1光偵測器的元件設計43 3.2元件製程45 3.2.1活化製程(Activation)46 3.2.2絕緣製程(Isolation)47 3.2.3矽擴散製程50 3.2.4 高台圖型製程(Mesa)50 3.2.5 集極電極沉積52 3.2.6二氧化矽包覆層沉積55 3.2.7 射極電極沉積56 3.3量測儀器介紹 57 3.3.1 I-V與L-I量測系統57 3.3.2太陽模擬光源(Solar simulator) I-V量測59 3.3.3光激發螢光(Photoluminescence, PL)量測系統62 3.3.4外部量子效率量測系統(Incident photon to electron conversion efficiency, IPCE)63 3.3.5響應時間(Response time)量測系統64 第四章結果與討論66 4.1氮化鎵n-p-i-n光偵測器量測結果與討論67 4.1.1(a) A型光電晶體光偵測器暗電流特性探討67 4.1.1(b) B型光電晶體光偵測器暗電流特性探討69 4.1.2(a) A型光電晶體光偵測器之外部量子效應(EQE)量測70 4.1.2(b) B型光電晶體光偵測器之外部量子效應量測79 4.1.3光電晶體光偵測器在不同偏壓下的響應率82 4.2氮化鎵n-p-i-n光偵測器響應時間量測結果與討論85 4.3氮化鎵n-p-i-n光偵測器響應時間的雜訊計算88 4.4氮化鎵n-p-i-n光偵測器不同光強度下的電壓值90 第五章 結論與未來展望94 參考文獻99

[1] E.Fred Schubert, “Light-emitting diode,” Cambridge University Press., New York, 2006.
[2] G. Y. Xu, A. Salvador, W. Kim, Z. Fan, C. Lu, H. Tang, H. Morkoç, G. Smith, M. Estes, B. Goldenberg, W. Yang, and S. Krishnankutty, “High speed, low noise ultraviolet photodetectors based on GaN structures,” Appl. Phys. Lett., Vol.71, pp. 2154, 1997.
[3] D. Walker, X. Zhang, P. Kung, A. Saxler, S. Javadpour, J. Xu, and M. Razeghi, “AlGaN ultraviolet photoconductors grown on sapphire,” Appl. Phys. Lett., Vol.68, pp. 2100, 1996.
[4] J. B. Limb, D. Yoo, J. H. Ryou, W. Lee, S. C. Shen, R. D. Dupuis, M. L. Reed, C. J. Collins, M. Wraback, D. Hanser, E. Preble, N. M. Williams, and K. Evans, “GaN ultraviolet avalanche photodiodes with optical gain greater than 1000 grown on GaN substrates by metal-organic chemical vapor deposition,” Appl. Phys. Lett., Vol.89, pp. 011112, 2006.
[5] A. Osinsky, S. Gangopadhyay, R. Gaska, B. Williams, M. A. Khan, D. Kuksenkov, and H. Temkin, “Visible-blind GaN Schottky barrier detectors grown on Si(111),” Appl. Phys. Lett., Vol.71, pp. 2334, 1997.
[6] G. Parish, S. Keller, P. Kozodoy, J. A. Ibbetson, H. Marchand, P. T. Fini, S. B. Fleischer, S. P. DenBaars, and U. K. Mishra, “High-performance (Al,Ga)N-based solar-blind ultraviolet p–i–n detectors on laterally epitaxially overgrown GaN,” Appl. Phys. Lett., Vol.75, pp. 247, 1999.
[7] E. Monroy, M. Hamilton, D. Walker, P. Kung, F. J. Sánchez, and M. Razeghi, “High-quality visible-blind AlGaN pin photodiodes,” Appl. Phys. Lett., Vol.74, pp. 1171, 1999.
[8] Y. Zhang, S.-C. Shen, H. J. Kim, S. Choi, J.-H. Ryou, R. D.Dupuis, and B. Narayan, “Low-noise GaN ultraviolet p-i-n photodiodes on GaN substrates,” Appl. Phys. Lett., Vol.94, pp. 221109, 2009.
[9] Shen, S.-C., Kao, T.-T., Kim, H.-J., Lee, Y.-C., Kim, J., Ji, M.-H., Ryou, J.-H., Detchprohm, T., Dupuis, R.D, “GaN/InGaN avalanche phototransistors,” Appl. Phys. Express., vol. 8, pp. 032101, 2015.
[10] Wei Yang, Thomas Nohava, Subash Krishnankutty, Robert Torreano, Scott McPherson, and Holly Marsh, “High gain GaN/AlGaN heterojunction phototransistor,” Appl. Phys. Express., vol. 73, pp. 7, 1998.
[11] M. L. Lee, J. K. Sheu, and Yung-Ru Shu, “Ultraviolet bandpass Al0.17Ga0.83N/GaN heterojunction phototransitors with high optical gain and high rejection ratio,” Appl. Phys. Express., vol. 92, pp. 053506, 2008.
[12]白世南,光電工程概論.ppt,建國科技大學電子工程系。
[13]劉博文,光電元件導論,全威圖書有限公司,台北,2005。
[14] S. O. Kasap, optoelectronics and photonics principles and practices, Peason Education Interational., 2001.
[15] S. M. Sze and Kwork K.Ng, “Physics of Semiconductor Devices,” John Wiley & Sons., 1981.
[16] Jia-ming Liu, “photonic Devices,” Cambridge University Press., 2010.
[17]葉秉慧、余孟純、林家煥、黃景勤,”一種以矽擴散型電流阻擋層製作氮化鎵垂直共振腔面射型發光元件的方法”,中華民國與美國發明專利申請中。
[18]許登坡,「氮化鎵光電晶體之研發」,國立台灣科技大學電子工程所碩士學位論文,台北,2016。
[19]廖彥超,「有無電流阻擋層與不同透明導電層材料與厚度對氮化鎵發光二極體電流分佈的影響」,國立台灣科技大學電子工程所碩士學位論文,台北,2011。
[20]黃致維,「氮化鎵光偵測器之初步研究」,國立台灣科技大學電子工程所碩士學位論文,台北,2014。
[21]黃義廷,「表面結構化對氮化銦鎵p-i-n光感測器特性之影響」,國立台灣科技大學電子工程所碩士學位論文,台北,2015。

QR CODE