簡易檢索 / 詳目顯示

研究生: 黃智優
Chih-Yu Huang
論文名稱: 由區塊鏈技術輔助的具資料安全性和貨物追蹤性之無人機物流系統
A Blockchain-aided UAV Delivery System for Enhanced Data Security and Parcels Traceability
指導教授: 周詩梵
Shih-Fan Chou
口試委員: 余亞儒
Ya-Ju Yu
莊清智
Ching-Chih Chuang
施淵耀
Yuan-Yao Shih
周詩梵
Shih-Fan Chou
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 100
中文關鍵詞: 區塊鏈無人機
外文關鍵詞: Hyperledger Fabric
相關次數: 點閱:186下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究通過使用無人機進行包裹配送,引入了一種創新的城市無人機物流方法。我們提出了一個借助區塊鏈技術支持的無人機配送場景,這不僅提高了便利性,同時也滿足了現代物流需求和消費者行為趨勢。

    我們研究的核心是將Hyperledger Fabric(HLF)私有區塊鏈網路與無人機物流模型整合。這一整合對於提升數據安全、可追蹤性和透明度至關重要,特別是通過使無人機能夠在整個配送任務中持續且即時地更新飛行和包裹資訊到區塊鏈帳本。

    為了最大化區塊鏈上記錄的交易總數,我們制定了一個數學規劃問題,以優化無人機群的交易提交週期,從而開發出公平無人機交易發送週期調度演算法。通過與Gurobi求解器和現有區塊鏈集成的無人機配送系統進行比較,對我們所提演算法的性能進行了嚴格檢驗。比較結果展示了我們演算法在管理交易週期和確保無人機之間公平資源利用的效率,同時不影響物流服務的安全性和可追蹤性。

    研究進一步探討了系統可擴展性、通訊效率和無人機間公平交易分配之間所需的平衡。這一探討凸顯了發展複雜通訊策略以避免潛在網路瓶頸的關鍵需求。未來研究方向包括優化通訊策略、根據即時網路狀態動態調整交易間隔,以及對不同區塊鏈平台在無人機物流中的效能進行全面評估。

    探索區塊鏈技術與無人機物流的結合,揭示了使城市配送系統更加高效、安全和透明的新途徑。本研究對於蓬勃發展的無人機物流領域的貢獻,強調了區塊鏈在徹底改變城市地區交付機制方面的潛力。


    This study introduces an innovative approach to urban UAV logistics through the utilization of unmanned aerial vehicles (UAVs) for parcel delivery. We present a blockchain-aided UAV delivery scenario that enhances convenience while adhering to modern logistics demands and consumer behavior trends.

    Central to our study is the integration of the Hyperledger Fabric (HLF) private blockchain network with the UAV logistics model. The integration is crucial for enhancing data security, traceability, and transparency, particularly by enabling UAVs to consistently and real-time update the blockchain ledger with flight and parcel information throughout their delivery missions.

    To maximize the total number of transactions recorded on the blockchain, a mathematical programming problem was formulated to optimize the transaction submission periods of UAVs, leading to the development of the Fair UAV Transaction Submission Period Scheduler (FUTSPS) algorithm. Our evaluation compared FUTSPS's effectiveness to the Gurobi Optimizer's optimal or near-optimal solutions and another blockchain-based UAV delivery system, which only logs logistics info at mission start and end. The comparison demonstrates FUTSPS's ability in managing transaction periods and ensuring equitable resource utilization among UAVs, without compromising the security and traceability of logistics services.

    The study further investigates the balance required between system scalability, communication efficiency, and equitable transaction distribution among UAVs. This examination highlights the critical need for sophisticated communication strategies to avert potential network bottlenecks. Future research avenues encompass optimizing communication strategies, dynamically altering transaction intervals in response to live network statuses, and conducting comprehensive evaluations of different blockchain platforms' efficacy in UAV logistics.

    Exploring the integration of blockchain technology with UAV logistics sheds light on new pathways for making urban delivery systems more efficient, secure, and transparent. The contributions of this study to the burgeoning field of UAV logistics underscore the transformative potential of blockchain in revolutionizing delivery mechanisms in urban settings.

    Abstract in Chinese . . . . . . . . . . . . . . . . . . . . . . . . . . i Abstract in English . . . . . . . . . . . . . . . . . . . . . . . . . . ii Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . iv Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix List of Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . x 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1 UAV Delivery Systems . . . . . . . . . . . . . . . . . . . 7 2.2 UAV Path Planning . . . . . . . . . . . . . . . . . . . . . . 9 2.3 UAV Precision Landing . . . . . . . . . . . . . . . . . . . 11 2.4 UAV Energy Consumption . . . . . . . . . . . . . . . . . 11 2.5 Blockchain . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.6 Blockchain-based Internet-of-Drone Systems . . . . . . . 15 3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2 HLF Integration and Performance . . . . . . . . . . . . . 22 3.2.1 Introduction to HLF Network Architecture . . . . 23 3.2.2 Integration of HLF with Aerial Logistics Scenario 30 3.2.3 Performance Modeling . . . . . . . . . . . . . . . 35 3.3 UAV Operational Mechanics . . . . . . . . . . . . . . . . 42 3.3.1 Wireless Channel Modeling . . . . . . . . . . . . 42 3.3.2 Energy Modeling . . . . . . . . . . . . . . . . . . 45 3.3.3 Path Planning . . . . . . . . . . . . . . . . . . . . 46 4 Problem Formulation and Algorithm Design . . . . . . . . . . . 50 4.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . 50 4.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . 51 4.3 Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . 57 5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.1 Development Environment . . . . . . . . . . . . . . . . . 63 5.2 Blockchain Setup . . . . . . . . . . . . . . . . . . . . . . 64 5.3 Smart Contract Design . . . . . . . . . . . . . . . . . . . 66 5.4 UAV Missions in Blockchain Applications . . . . . . . . . 68 5.4.1 Communication Tasks . . . . . . . . . . . . . . . 69 5.4.2 Computation Tasks . . . . . . . . . . . . . . . . . 70 5.5 Performance Analysis of Peer Nodes . . . . . . . . . . . . 72 6 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . 74 6.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . 74 6.2 Comparison Approaches . . . . . . . . . . . . . . . . . . 78 6.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . 79 7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

    [1]Hyperledger Fabric, “Hyperledger fabric ledger.” https://hyperledger-fabric.readthedocs.io/en/latest/ledger/ledger.html. Online available; accessed on February 27, 2024
    [2]F. A. Administration, “14 CFR Part 135 air carrier and operator certification.” https://www.faa.gov/licenses_certificates/airline_certification/135_certification. Online available; accessed on February 27, 2024.
    [3]Amazon, “Amazon Prime Air prepares for drone deliveries.” https://www.aboutamazon.com/news/transportation/amazon-prime-air-prepares-for-drone-deliveries, 2022. Online available; accessed on February 27, 2024.
    [4]A. Woodworth, “The wing delivery network.” https://blog.wing.com/2023/03/the-wing-delivery-network.html, 2023. Online available; accessed on February 27, 2024.
    [5]R. Nambiar, “How Rwanda is using drones to save millions of lives.” https://www.cnbc.com/2016/05/27/how-rwanda-is-using-drones-to-save-millions-of-lives.html, 2016. Online available; accessed on February 27, 2024.
    [6]Zipline, “Zipline just announced their next-generation platform for precision home delivery.” https://www.flyzipline.com, 2023. Online available; accessed on February 27, 2024.
    [7]EHang, “DHL-Sinotrans and EHang jointly launch first fully-automated and intelligent urban drone delivery solution in china.” https://www.ehang.com/news/497.html, 2019. Online available;
    [8]DHL, “DHL Express launches its first regular fully-automated and intelligent urban drone delivery service.” https://www.dhl.com/tw-en/home/press/press-archive/2019/dhl-express-launches-its-first-regular-fully-automated-and-intelligent-urban-drone-delivery-html, 2019. Online available; accessed on February 27, 2024.
    [9]S. A. H. Mohsan, N. Q. H. Othman, M. A. Khan, H. Amjad, and J. Żywiołek, “A comprehensive review of micro uav charging techniques,” Micromachines, vol. 13, no. 6, p. 977, 2022.
    [10]M. Abrar, U. Ajmal, Z. M. Almohaimeed, X. Gui, R. Akram, and R. Masroor, “Energy efficient uav-enabled mobile edge computing for iot devices: A review,” IEEE Access, vol. 9, pp. 127779–127798, 2021.
    [11]J. Sunny, N. Undralla, and V. Madhusudanan Pillai, “Supply chain transparency through blockchain-based traceability: An overview with demonstration,” Computers & Industrial Engineering, vol. 150, p. 106895, 2020.
    [12]“R3 Corda.” https://r3.com/, 2023. Online available; accessed on February 27, 2024.
    [13]“Quorum.” https://consensys.net/quorum/, 2023. Online available; accessed on February 27, 2024.
    [14]H. Foundation, “Hyperledger Fabric.” https://www.hyperledger.org/use/fabric, 2023. Online available; accessed on February 27, 2024.
    [15]K. T. San, S. J. Mun, Y. H. Choe, and Y. S. Chang, “Uav delivery monitoring system,” in MATEC Web of Conferences, vol. 151, p. 04011, EDP Sciences, 2018.
    [16]“Mavlink developer guide.” https://mavlink.io/en/, 2023. Online available; accessed on February 27, 2024.
    [17]J. Xu, X. Liu, X. Li, L. Zhang, and Y. Yang, “Express: An energy-efficient and secure framework for mobile edge computing and blockchain based smart systems,” in Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering, pp. 1283–1286, 2020.
    [18]J. Xu, X. Liu, X. Li, L. Zhang, J. Jin, and Y. Yang, “Energy-aware computation management strategy for smart logistic system with mec,” IEEE Internet of Things Journal, vol. 9, no. 11, pp. 8544–8559, 2021.
    [19]J. Carvajal-Rodriguez, M. Morales, and C. Tipantuña, “3d path planning algorithms in uav-enabled communications systems: A mapping study,” Future Internet, vol. 15, no. 9, p. 289, 2023.
    [20]O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,” in Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 500–505, 1985.
    [21]J. Sun, J. Tang, and S. Lao, “Collision avoidance for cooperative uavs with optimized artificial potential field algorithm,” IEEE Access, vol. 5, pp. 18382–18390, 2017.
    [22]A. Khazetdinov, A. Zakiev, T. Tsoy, M. Svinin, and E. Magid, “Embedded aruco: a novel approach for high precision uav landing,” in 2021 International Siberian Conference on Control and Communications (SIBCON), pp. 1–6, IEEE, 2021.
    [23]M. S. Alam and J. Oluoch, “A survey of safe landing zone detection techniques for autonomous unmanned aerial vehicles (uavs),” Expert Systems with Applications, vol. 179, p. 115091, 2021.
    [24]H. V. Abeywickrama, B. A. Jayawickrama, Y. He, and E. Dutkiewicz, “Empirical power consumption model for uavs,” in 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), pp. 1–5, IEEE, 2018.
    [25]H. Gong, B. Huang, B. Jia, and H. Dai, “Modelling power consumptions for multi-rotor uavs,” arXiv preprint arXiv:2209.04128, 2022.
    [26]S. Majeed, A. Sohail, K. N. Qureshi, A. Kumar, S. Iqbal, and J. Lloret, “Unmanned aerial vehicles optimal airtime estimation for energy aware deployment in iot-enabled fifth generation cellular networks,” EURASIP Journal on Wireless Communications and Networking, vol. 2020, no. 1, pp. 1–14, 2020.
    [27]A. Das, “A study on energy consumption of different wireless devices,” 03 2020
    [28]M. Usman, M. R. Asghar, I. S. Ansari, M. Qaraqe, and F. Granelli, “An energy consumption model for wifi direct based d2d communications,” in 2018 IEEE global communications conference (GLOBECOM), pp. 1–6, IEEE, 2018.
    [29]E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, et al., “Hyperledger fabric: a distributed operating system for permissioned blockchains,” in Proceedings of the thirteenth EuroSys conference, pp. 1–15, 2018.
    [30]C. Dong, F. Jiang, X. Li, A. Yao, G. Li, and X. Liu, “A blockchain-aided self-sovereign identity framework for edge-based uav delivery system,” in 2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Computing (CCGrid), pp. 622–624, IEEE, 2021.
    [31]P. Abichandani, D. Lobo, S. Kabrawala, and W. McIntyre, “Secure communication for multiquadrotor networks using ethereum blockchain,” IEEE Internet of Things Journal, vol. 8, no. 3, pp. 1783–1796, 2020.
    [32]I. J. Jensen, D. F. Selvaraj, and P. Ranganathan, “Blockchain technology for networked swarms of unmanned aerial vehicles (uavs),” in 2019 IEEE 20th International Symposium on” A World of Wireless, Mobile and Multimedia Networks”(WoWMoM), pp. 1–7, IEEE, 2019.
    [33]A. Allouch, O. Cheikhrouhou, A. Koubâa, K. Toumi, M. Khalgui, and T. Nguyen Gia, “Utm-chain: blockchain-based secure unmanned traffic management for internet of drones,” Sensors, vol. 21, no. 9, p. 3049, 2021.
    [34]T. Nguyen, R. Katila, and T. N. Gia, “An advanced internet-of-drones system with blockchain for improving quality of service of search and rescue: A feasibility study,” Future Generation Computer Systems, vol. 140, pp. 36–52, 2023.
    [35]M. Jara, D. Vyt, O. Mevel, T. Morvan, and N. Morvan, “Measuring customers benefits of click and collect,” Journal of Services Marketing, vol. 32, no. 4, pp. 430–442, 2018.
    [36]V. Victor, N. Sharfa, R. J. Nathan, and J. R. Hanaysha, “Use of click and collect e-tailing services among urban consumers,” Amity Journal of Marketing, vol. 3, no. 2, pp. 1–16, 2018.
    [37]I. Curry, “Version 3 x. 509 certificates,” Entrust Technologies White Paper, 1996.
    [38]K. Birman, “The promise, and limitations, of gossip protocols,” ACM SIGOPS Operating Systems Review, vol. 41, no. 5, pp. 8–13, 2007.
    [39]J. Kreps, N. Narkhede, J. Rao, et al., “Kafka: A distributed messaging system for log processing,” in Proceedings of the NetDB, vol. 11, pp. 1–7, Athens, Greece, 2011.
    [40]D. Ongaro and J. Ousterhout, “In search of an understandable consensus algorithm,” in 2014 USENIX annual technical conference (USENIX ATC 14), pp. 305–319, 2014.
    [41]M. Castro, B. Liskov, et al., “Practical byzantine fault tolerance,” in OsDI, vol. 99, pp. 173–186, 1999.
    [42]A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf, and S. Capkun, “On the security and performance of proof of work blockchains,” in Proceedings of the 2016 ACM SIGSAC conference on computer and communications security, pp. 3–16, 2016.
    [43]X. Xu, G. Sun, L. Luo, H. Cao, H. Yu, and A. V. Vasilakos, “Latency performance modeling and analysis for hyperledger fabric blockchain network,” Information Processing & Management, vol. 58, no. 1, p. 102436, 2021.
    [44]J. F. Shortle, J. M. Thompson, D. Gross, and C. M. Harris, Fundamentals of queueing theory, vol. 399. John Wiley & Sons, 2018.
    [45]H. Fabric, “Hyperledger fabric documentation.” https://hyperledger-fabric.readthedocs.io/en/release-2.5/smartcontract/smartcontract.html, 2023. Online available; accessed on February 27, 2024.
    [46]O. Wu, S. Li, L. Liu, H. Zhang, X. Zhou, and Q. Lu, “Performance modeling of hyperledger fabric 2.0,” in Proceedings of the 26th International Conference on Evaluation and Assessment in Software Engineering, pp. 357–365, 2022.
    [47]L. Jiang, X. Chang, Y. Liu, J. Mišić, and V. B. Mišić, “Performance analysis of hyperledger fabric platform: A hierarchical model approach,” Peer-to-Peer Networking and Applications, vol. 13, pp. 1014–1025, 2020.
    [48]S.-F. Chou, A.-C. Pang, and Y.-J. Yu, “Energy-aware 3d unmanned aerial vehicle deployment for network throughput optimization,” IEEE Transactions on Wireless Communications, vol. 19, no. 1, pp. 563–578, 2020.
    [49]A. Al-Hourani, S. Kandeepan, and S. Lardner, “Optimal lap altitude for maximum coverage,” IEEE Wireless Communications Letters, vol. 3, no. 6, pp. 569–572, 2014.
    [50]A. Al-Hourani, S. Kandeepan, and A. Jamalipour, “Modeling air-to-ground path loss for low altitude platforms in urban environments,” in 2014 IEEE Global Communications Conference, pp. 2898–2904, 2014.
    [51]O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,” The international journal of robotics research, vol. 5, no. 1, pp. 90–98, 1986.
    [52]J. Sun, J. Tang, and S. Lao, “Collision avoidance for cooperative uavs with optimized artificial potential field algorithm,” IEEE Access, vol. 5, pp. 18382–18390, 2017.
    [53]T. Guggenberger, J. Sedlmeir, G. Fridgen, and A. Luckow, “An in-depth investigation of the performance characteristics of hyperledger fabric,” Computers & Industrial Engineering, vol. 173, p. 108716, 2022.
    [54]X. Li, Feasibility of duty cycling gps receiver for trajectory-based services. Rutgers The State University of New Jersey, School of Graduate Studies, 2014.
    [55]gRPC authors, “gRPC.” https://grpc.io/, 2023. Online available; accessed on February 27, 2024.
    [56]G. Gov, “GPS accuracy.” https://www.gps.gov/systems/gps/performance/accuracy/, 2023. Online available; accessed on February 27, 2024.
    [57]M. Tahsin, S. Sultana, T. Reza, and M. Hossam-E-Haider, “Analysis of dop and its preciseness in gnss position estimation,” in 2015 International Conference on Electrical Engineering and Information Communication Technology (ICEEICT), pp. 1–6, 2015.
    [58]J. Beale, A. Orebaugh, and G. Ramirez, Wireshark & Ethereal network protocol analyzer toolkit. Elsevier, 2006.
    [59]B. Dowling, M. Fischlin, F. Günther, and D. Stebila, “A cryptographic analysis of the tls 1.3 handshake protocol,” Journal of Cryptology, vol. 34, no. 4, p. 37, 2021.
    [60]N. Potlapally, S. Ravi, A. Raghunathan, and N. Jha, “A study of the energy consumption characteristics of cryptographic algorithms and security protocols,” IEEE Transactions on Mobile Computing, vol. 5, no. 2, pp. 128–143, 2006.
    [61]“perf: Linux profiling with performance counters.” Online available; accessed on February 27, 2024
    [62]A. Fotouhi, H. Qiang, M. Ding, M. Hassan, L. G. Giordano, A. Garcia-Rodriguez, and J. Yuan, “Survey on uav cellular communications: Practical aspects, standardization advancements, regulation, and security challenges,” IEEE Communications Surveys & Tutorials, vol. 21, no. 4, pp. 3417–3442, 2019.
    [63]Federal Aviation Administration, “Small unmanned aircraft systems (uas) regulations (part 107).” https://www.faa.gov/newsroom/small-unmanned-aircraft-systems-uas-regulations-part-107, 2024. Online available; accessed on February 27, 2024.
    [64]Y. Zeng, J. Xu, and R. Zhang, “Energy minimization for wireless communication with rotary-wing uav,” IEEE Transactions on Wireless Communications, vol. 18, no. 4, pp. 2329–2345, 2019.
    [65]Q. Wu, Y. Zeng, and R. Zhang, “Joint trajectory and communication design for multi-uav enabled wireless networks,” IEEE Transactions on Wireless Communications, vol. 17, no. 3, pp. 2109–2121, 2018.
    [66]“Gurobi optimization.” https://www.gurobi.com/, 2024. Online available; accessed on February 27, 2024.
    [67]R. Nugraha, M. Masuduzzaman, M. Choi, and S. Y. Shin, “Multi-uav employed secure parcel delivery system using blockchain,” in 2023 14th International Conference on Information and Communication Technology Convergence (ICTC), pp. 695–700, 2023.

    無法下載圖示
    全文公開日期 2029/03/28 (校外網路)
    全文公開日期 2029/03/28 (國家圖書館:臺灣博碩士論文系統)
    QR CODE