簡易檢索 / 詳目顯示

研究生: 徐兆鴻
Chao-Hung Hsu
論文名稱: 使用AVX-512指令集於5G基地臺實體層以提升到達角方向估測之效能
Using AVX-512 Instruction Set in the Physical Layer of 5G gNodeB to Improve the Performance of Direction-of-Arrival Estimation
指導教授: 徐勝均
Sendren Sheng-Dong Xu
口試委員: 徐勝均
Sendren Sheng-Dong Xu
柯正浩
黃旭志
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 74
中文關鍵詞: 第五代行動通訊技術到達角方向Intel® AVX-512 (Advanced Vector Extensions 512)指令集最小變異量無失真響應多訊號分類多輸入多輸出實體層
外文關鍵詞: The 5th Generation Mobile Networks (5G), Direction of Arrival (DOA), Intel® AVX-512 (Advanced Vector Extensions 512) Set, Minimum Variance Distortionless Response (MVDR), Multiple Signal Classification (MUSIC), Multiple-Input Multiple-Output (MIMO), Physical Layer
相關次數: 點閱:69下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 到達角方向(Direction of Arrival, DOA)的估測在5G通訊多輸入多輸出(Multiple-Input Multiple-Output, MIMO)的架構上扮演著重要的角色。因此,如何精準估測DOA並優化DOA估測之運算已廣受到許多學者的重視。首先,本研究在5G基地臺實體層使用Multiple Signal Classification (MUSIC)和Minimum Variance Distortionless Response (MVDR)兩種演算法來估測DOA。更進一步,我們在Intel i9-9960X CPU上,使用AVX-512指令集,以優化DOA估測中的矩陣乘法運算。AVX-512的引入,使得系統每次能處理16筆浮點數據,有效地提高了複數數據處理的效率。通過多執行緒平行處理的技術,使得每個CPU核心獨立進行AVX-512運算。之後,我們將此方法整合至5G規格下的OpenAirInterface (OAI)開源軟體實驗平台。並且,比較不同天線數量4、8、16、32和64的各種情況下,AVX-512的運算時間的優化程度。此外,我們透過頻譜分析圖來比較MUSIC和MVDR兩種演算法對於訊號的估測能力。最後將MUSIC、MVDR兩者擴展成4個使用者數量的情境,比較多使用者架構下與單使者的運算差異。實驗結果證明了:本研究所提出的方法,可以提升在5G基地臺實體層對到達角方向估測之效能,減少到達角方向估測時間。特別是針對處理大型矩陣的運算需求,本方法可以提高運算的靈活性和效率。然而,並非所有情況都適用AVX-512指令集做加速。根據資料量的大小,來選擇適當的運算方式,對於最大化運算效率至關重要,這可以被考慮為未來研究方向之一。


    The Direction-of-Arrival (DOA) estimation of plays an important role in the Multiple-Input Multiple-Output (MIMO) architecture of the 5th Generation Mobile Networks (5G) communications. Therefore, how to accurately estimate DOA and optimize the operation of DOA estimation has been widely valued by many scholars. First, this study uses two algorithms: 1) MUltiple SIgnal Classification (MUSIC) and 2) Minimum Variance Distortionless Response (MVDR), to estimate DOA in the physical layer of the 5G gNodeB. Furthermore, we use the AVX-512 instruction set on the Intel i9-9960X CPU to optimize the matrix multiplication operation in DOA estimation. The usage of AVX-512 enables the system to process 16 floating point data at a time, effectively improving the efficiency of data processing of the complex values. Through the multi-thread parallel processing technique, each Central Processing Unit (CPU) core independently performs AVX-512 operations. Afterwards, we integrated this method into the OpenAirInterface (OAI) open-source software experimental platform under 5G specifications. Moreover, we compare the degree of optimization of the computing time of AVX-512 under various conditions with different numbers of antennas: 4, 8, 16, 32, and 64. In addition, we use spectrum analysis charts to compare the signal estimation capabilities of the two algorithms, MUSIC and MVDR. Finally, MUSIC and MVDR are expanded to a scenario with four users, and the computing differences between multi-user architecture and single user are compared. The experimental results prove that the method proposed in this study can improve the performance of DOA estimation in the physical layer of 5G gNodeB and reduce the time of DOA estimation. Especially for the operation requirements of processing large matrices, this method can improve the flexibility and efficiency of operations. However, not all situations are suitable for AVX-512 instruction set acceleration. Selecting an appropriate computing method based on the amount of data is crucial to maximizing computing efficiency, and this can be considered as one of the future research directions.

    摘要 ...................................................... I Abstract ..............................................................II 致謝 ............................................................ IV 目錄 ...................................................V 圖目錄 ................................................................. VII 表目錄 ........................................................... IX 第一章 緒論....................................................................1 1.1 研究目的.......................................................................................1 1.2 研究背景與動機.............................................................................1 1.3 方法與貢獻.......................................................................................3 1.4 論文架構..............................................................................................4 第二章 預備知識 ..............................................5 2.1 行動通訊的演進...............................................5 2.2 無線通訊系統架構 ..........................................................6 2.2.1 幀結構...........................................................................................7 2.2.2 數位訊號與類比訊號..................................................................10 2.3 Modulation 調變種類.............................................11 2.3.1 脈衝調變..............................................................................12 2.3.2 IQ 星座圖.......................................................................................14 2.4 實體層介紹..............................................................................................16 2.4.1 實體層模組架構 ...................................................................19 2.4.2 OpenAirInterface 軟體平台...................................................20 2.5 AVX-512 指令集......................................................................22 2.6 DOA 角度估測.....................................................................24 第三章 DOA 演算法實作...........................................................................26 3.1 問題陳述...................................................................................26 3.2 波束成型之訊號架構 ......................................................27 3.3 MUSIC 演算法........................................................................28 3.4 MVDR 演算法 .............................................................................29 3.5 OpenAirInterface 軟體整合.......................................................31 3.5.1 單使用者架構 ...........................................................................34 3.5.2 多使用者架構 ...................................................................................35 第四章 AVX-512 指令集之運算優化 ....................................................37 4.1 AVX-512 運算架構.................................................................37 4.2 矩陣乘法運算....................................................................38 4.3 矩陣資料搬移...........................................................................41 4.4 架構實作流程.........................................................................43 4.5 AVX-512 多使用者架構 ....................................................47 第五章 實驗結果與討論..............................................................50 5.1 測試標準........................................................................................50 5.2 實驗流程與參數.................................................................50 5.3 實驗結果與分析.................................................................53 5.3.1 MUSIC 與 MVDR 估測..............................................................53 5.3.2 AVX-512 運算優化 .....................................................................55 5.3.3 整體優化效能 ...........................................................................58 第六章 結論與未來展望...........................................................61 6.1 結論 ............................................................................................61 6.2 未來展望................................................................................62 參考文獻........................................................................................63

    參考文獻
    [1] F. A. Pereira de Figueiredo, “An overview of massive MIMO for 5G and 6G,” IEEE Latin America Transactions, vol. 20, no. 6, pp. 931-940, June 2022. DOI: 10.1109/TLA.2022.9757375
    [2] Y. Zhang, J.-Y. Deng, M.-J. Li, D. Sun, and L.-X. Guo, “A MIMO dielectric resonator antenna with improved isolation for 5G mm-wave applications,” IEEE Antennas and Wireless Propagation Letters, vol. 18, no. 4, pp. 747-751, April 2019. DOI: 10.1109/LAWP.2019.2901961
    [3] B. A. F. Esmail and S. Koziel, “Design and optimization of metamaterial-based dual-band 28/38 GHz 5G MIMO antenna with modified ground for isolation and bandwidth improvement,” IEEE Antennas and Wireless Propagation Letters, vol. 22, no. 5, pp. 1069-1073, May 2023. DOI: 10.1109/LAWP.2022.3232622
    [4] D. Serghiou, M. Khalily, V. Singh, A. Araghi, and R. Tafazolli, “Sub-6 GHz dual-band 8 × 8 MIMO antenna for 5G Smartphones,” IEEE Antennas and Wireless Propagation Letters, vol. 19, no. 9, pp. 1546-1550, September. 2020.
    DOI: 10.1109/LAWP.2020.3008962
    [5] A. Desai, M. Palandoken, J. Kulkarni, G. Byun, and T. K. Nguyen, “Wideband flexible/transparent connected-ground MIMO antennas for Sub-6 GHz 5G and WLAN applications,” IEEE Access, vol. 9, pp. 147003-147015, 2021. DOI: 10.1109/ACCESS.2021.3123366
    [6] 3GPP, “5G NR; NR; Physical Layer Procedures for Data,” The 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.214, April 2024, version 18.5.0.
    [7] S. K. Goudos, P. D. Diamantoulakis, and G. K. Karagiannidis, “Multi-objective optimization in 5G wireless networks with massive MIMO,” IEEE Communications Letters, vol. 22, no. 11, pp. 2346-2349, Nov. 2018.
    DOI: 10.1109/LCOMM.2018.2868663
    [8] O. Elijah, S. K. Abdul Rahim, W. K. New, C. Y. Leow, K. Cumanan, and T. Kim Geok, “Intelligent massive MIMO systems for beyond 5G networks: An overview and future trends,” IEEE Access, vol. 10, pp. 102532-102563, 2022. DOI: 10.1109/ACCESS.2022.3208284
    [9] N. Hussain and N. Kim, “Integrated microwave and mm-Wave MIMO antenna module with 360° pattern diversity for 5G internet of things,” IEEE Internet of Things Journal, vol. 9, no. 24, pp. 24777-24789, Dec.15, 2022. DOI: 10.1109/JIOT.2022.3194676
    [10] S. Tariq, S. I. Naqvi, N. Hussain, and Y. Amin, “A metasurface-based MIMO antenna for 5G millimeter-wave applications,” IEEE Access, vol. 9, pp. 51805-51817, 2021, DOI: 10.1109/ACCESS.2021.3069185
    [11] A. Zhao and Z. Ren,”Size reduction of self-isolated MIMO antenna system for 5G mobile phone applications,” IEEE Antennas and Wireless Propagation Letters, vol. 18, no. 1, pp. 152-156, Jan. 2019. DOI: 10.1109/LAWP.2018.2883428
    [12] J. Dai, H. Yin, S. Liu, and Y. Lv, “AVX-512 based, high-throughput LDPC decoders,” in Proc. International Conference on Image, Vision and Computing, Qingdao, China, July 23-25. 2021, pp. 431-435, DOI: 10.1109/ICIVC52351.2021.9527002
    [13] S. Gueron and V. Krasnov, “Accelerating big integer arithmetic using intel IFMA extensions,” in Proc. IEEE Symposium on Computer Arithmetic, Silicon Valley, CA, USA, July 10-13, 2016. pp. 32-38, DOI: 10.1109/ARITH.2016.22
    [14] Z. Yin, T. Zhang, A. Müller, H. Liu, Y. Wei, B. Schmidt, and W. Liu “Efficient parallel sort on AVX-512-Based multi-core and many-core architectures,” in Proc. IEEE International Conference on High Performance Computing and Communications; IEEE International Conference on Smart City; IEEE International Conference on Data Science and Systems, Zhangjiajie, China, August 10-12, 2019. pp. 168-176, DOI: 10.1109/HPCC/SmartCity/DSS.2019.00038
    [15] A. R. Carneiro, M. S. Serpa, and P. O. A. Navaux, “Lightweight deep learning applications on AVX-512,” in Proc. IEEE Symposium on Computers and Communications, Athens, Greece, December 5-8, 2021. pp. 1-6, DOI: 10.1109/ISCC53001.2021.9631464
    [16] C. S. Anderson, J. Zhang, and M. Cornea, “Enhanced vector math support on the intel®AVX-512 architecture,” in Proc. IEEE Symposium on Computer Arithmetic, Amherst, MA, USA, June 25-27, 2018. pp. 120-124, DOI: 10.1109/ARITH.2018.8464794
    [17] I. Kulikov, I. Chernykh, and A. Tchernykh, “A scalable parallel computing framework for large-scale astrophysical fluid dynamics numerical simulation,“ in Proc. International Conference on Parallel and Distributed Computing, Applications and Technologies, Gold Coast, QLD, Australia, December 5-7, 2019. pp. 328-333, DOI: 10.1109/PDCAT46702.2019.00066
    [18] L. Xiang, S. Zhong, R. G. Maunder, and L. Hanzo, “Reduced-complexity low-latency logarithmic successive cancellation stack polar decoding for 5G new radio and its software implementation,“ IEEE Transactions on Vehicular Technology, vol. 69, no. 11, pp. 12449-12458, November, 2020. DOI: 10.1109/TVT.2020.3026915
    [19] T. Edamatsu and D. Takahashi, “Acceleration of large integer multiplication with intel AVX-512 instructions,“ in Proc. IEEE International Conference on High Performance Computing and Communications; IEEE International Conference on Smart City; IEEE International Conference on Data Science and Systems, Exeter, UK, June 28-30, 2018. pp. 211-218,
    DOI: 10.1109/HPCC/SmartCity/DSS.2018.00059
    [20] A. M. Almufti and O. G. Morozov, “1Tbit/s per lambda high order quadrature amplitude modulation coherent optical transmission system design to support (5G+),” in Proc. Systems of Signal Synchronization, Generating and Processing in Telecommunications, Pskov, Russian Federation, June 28-30, 2023. pp. 1-4, DOI: 10.1109/SYNCHROINFO57872.2023.10178605
    [21] T. Sultana, R. A. Akhi, J. H. Turag, and S. Najeeb, “Study of different candidates of modulation schemes for 5G communication systems,” in Proc. International Conference on Electrical, Computer and Communication Engineering, Chittagong, Bangladesh, February 23-25, 2023. pp. 01-05, DOI: 10.1109/ECCE57851.2023.10101611
    [22] O. G. Morozov and A. M. Almufti, “Simulation with investigation for 16Tbit/s high order quadrature amplitude modulation dual polarization coherent optical transmission system for 5G and beyond,” in Proc. Systems of Signal Synchronization, Generating and Processing in Telecommunications, Pskov, Russian Federation, June 28-30, 2023. pp. 1-5, DOI: 10.1109/SYNCHROINFO57872.2023.10178497
    [23] H. Bilel and A. Taoufik, “Spectral floquet-spatial modulations devoted to strongly coupled periodic arrays: metasurfaces, dense massive MIMO, reconfigurable-intelligent-surfaces (RIS), 5G and 6G uses,” in Proc. European Conference on Antennas and Propagation, Florence, Italy, March 26-31, 2023. pp. 1-5, DOI: 10.23919/EuCAP57121.2023.10133810
    [24] L. Gaohui and X. Mingtao, “Research on a modulation recognition method for the FBMC-OQAM signals in 5G mobile communication system,” in Proc. IEEE Conference on Industrial Electronics and Applications, Wuhan, China, May 31, 2018. pp. 2544-2547, DOI: 10.1109/ICIEA.2018.8398139
    [25] E. McCune, “5G-NR bandwidth efficient modulation options for efficient link operation that are compatible with mmw transistor nonlinearities,” in Proc. IEEE 5G World Forum, Silicon Valley, CA, USA, July 09-11, 2018. pp. 289-293, DOI: 10.1109/5GWF.2018.8516944
    [26] M. I. Sheik Mamode and T. Pawan Fowdur, “Performance analysis of Link Adaptation with MIMO and varying modulation and coderates for 5G systems,” in Proc. International Conference on Emerging Trends in Electrical, Electronic and Communications Engineering, Balaclava, Mauritius, November 25-27, 2020. pp. 222-228, DOI: 10.1109/ELECOM49001.2020.9297025
    [27] R. Correia and N. B. Carvalho, “OFDM-like high order backscatter modulation,” in Proc. IEEE MTT-S International Microwave Workshop Series on 5G Hardware and System Technologies, Dublin, Ireland, August 30-31, 2018. pp. 1-3, DOI: 10.1109/IMWS-5G.2018.8484348
    [28] M. U. Hadi, S. Kausar, and I. Mittal, “Efficient Pre-BPF based Sigma delta radio over fiber system for 5G NR fronthauls,” in Proc. IEEE EUROCON International Conference on Smart Technologies, Lviv, Ukraine, July 06-08, 2021. pp. 308-311, DOI: 10.1109/EUROCON52738.2021.9535555
    [29] M. Emmaeinna, S. Faci, A.-L. Billabert, A. Kabalan, C. Algani, and M. L. Diakité, “Performance analysis of radio-over-fiber based on phase-modulation and direct-detection for the future 5G network,” in Proc. International Conference on Transparent Optical Networks, Bucharest, Romania, July 01-05, 2018. pp. 1-4, DOI: 10.1109/ICTON.2018.8473761
    [30] C.-Y. Chang, N. Nikaein, R. Knopp, T. Spyropoulos, and S. S. Kumar, “FlexCRAN: A flexible functional split framework over ethernet fronthaul in Cloud-RAN,” in Proc. IEEE International Conference on Communications, Paris, France, May 21-25, 2017. pp. 1-7, DOI: 10.1109/ICC.2017.7996632
    [31] N. M. Rekoputra, R. Harwahyu, and R. F. Sari, “Performance study of OpenAirInterface 5G System on the cloud platform managed by juju orchestration,” in Proc. International Seminar on Research of Information Technology and Intelligent Systems, Yogyakarta, Indonesia, December 05-06, 2019. pp. 211-216, DOI: 10.1109/ISRITI48646.2019.9034647
    [32] B. D. and S. Chaudhari, “Performance evaluation of openairinterface's scheduling algorithms for 5G networks,” in Proc. International Conference for Emerging Technology, Belgaum, India, May 26-28, 2023. pp. 1-4, DOI: 10.1109/INCET57972.2023.10170129
    [33] J. Manco, G. G. Baños, J. Härri, and M. Sepulcre, “Prototyping V2X applications in large-scale scenarios using OpenAirInterface,” in Proc. IEEE Vehicular Networking Conference, New York, NY, USA, December 16-18, 2020. pp. 1-4, DOI: 10.1109/VNC51378.2020.9318327
    [34] F. Völk, R. T. Schwarz, and A. Knopp, “In-lab performance analysis of a 5G non-terrestrial network using OpenAirInterface,” in Proc. IEEE International Conference on Wireless for Space and Extreme Environments, Aveiro, Portugal, September 06-08, 2023. pp. 167-172, DOI: 10.1109/WiSEE58383.2023.10289494
    [35] G. Dludla, M. Vilakazi, C. R. Burger, A. A. Lysko, L. Ngcama, L. Mboweni, M. Masonta, H. Kobo, and L. Mamushiane, “Testing performance for several use cases with an indoor OpenAirInterface USRP-Based base station,” in Proc. International Conference on Multimedia, Signal Processing and Communication Technologies, Aligarh, India, November 26-27, 2022. pp. 1-5, DOI: 10.1109/IMPACT55510.2022.10028998
    [36] Y. Gao, X. Zhang, and H. Yuan, “Integration and connection test for OpenAirInterface 5G standalone system,” in Proc. IEEE International Conference on Civil Aviation Safety and Information Technology, Changsha, China, October 20-22, 2021. pp. 1010-1014, DOI: 10.1109/ICCASIT53235.2021.9633433
    [37] S. Deshpande, R. Goyal, A. Jewalikar, A. Gadgil, K. Waghurdekar, and H. Zafar, “Making installation of OpenAirInterface (OAI) easier using network namespaces,” in Proc. International Conference for Convergence in Technology, Mangalore, India, October 27-28, 2018. pp. 1-4, DOI: 10.1109/I2CT42659.2018.9058105
    [38] C.-Y. Lo, Y.-W. Hua, W.-C. Yu, and Y.-M. Chuang, “Functional verification and performance testing for OpenAirinterface (OAI) eNodeB,” in Proc. Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, Kuala Lumpur, Malaysia, December 12-15, 2017. pp. 1456-1459, DOI: 10.1109/APSIPA.2017.8282262
    [39] S. S. Kumar, R. Knopp, N. Nikaein, D. Mishra, B. R. Tamma, A. A. Franklin, K. Kuchi, and R. Gupta, “FLEXCRAN: Cloud radio access network prototype using OpenAirInterface,” in Proc. International Conference on Communication Systems and Networks, Bengaluru, India, January 04-08, 2017. pp. 421-422, DOI: 10.1109/COMSNETS.2017.7945423
    [40] T. Dreibholz, “A 4G/5G packet core as VNF with open source MANO and OpenAirInterface,” in Proc. International Conference on Software, Telecommunications and Computer Networks, Split, Croatia, September 17-19, 2020. pp. 1-3, DOI: 10.23919/SoftCOM50211.2020.9238222
    [41] W. T. Han and R. Knopp, “OpenAirInterface: A pipeline structure for 5G,” in Proc. IEEE International Conference on Digital Signal Processing, Shanghai, China, November 19-21, 2018. pp. 1-4, DOI: 10.1109/ICDSP.2018.8631835
    [42] M. Einhaus, M. B. Charaf, I. Kim, and P. Arnold, “Bandwidth part adaptation and processing time evaluation with OpenAirInterface,” in Proc. IEEE Vehicular Technology Conference, Chicago, IL, USA, August 27-30, 2018. pp. 1-5, DOI: 10.1109/VTCFall.2018.8690902
    [43] V. G. Drozdova and A. A. Kalachikov, “SDR based evaluation of the initial cell search in 5G NR OpenAirInterface implementation,” in Proc. XV International Scientific-Technical Conference on Actual Problems Of Electronic Instrument Engineering, Novosibirsk, Russian Federation, November 19-21, 2021. pp. 248-251, DOI: 10.1109/APEIE52976.2021.9647493
    [44] A. Keliris and M. Maniatakos, “Investigating large integer arithmetic on Intel Xeon Phi SIMD extensions,“ in Proc. IEEE International Conference on Design Technology of Integrated Systems in Nanoscale Era, Santorini, Greece, May 06-08, 2014. pp. 1-6, DOI: 10.1109/DTIS.2014.6850661
    [45] S. Gueron and V. Krasnov, “Accelerating big integer arithmetic using intel IFMA extensions,“ in Proc. IEEE Symposium on Computer Arithmetic, Silicon Valley, CA, USA, July 10-13, 2016. pp. 32-38, DOI: 10.1109/ARITH.2016.22
    [46] S. Sivakrishna and R. S. Yarrabothu, “Design and simulation of 5G massive MIMO kernel algorithm on SIMD vector processor,” in Proc. Conference on Signal Processing And Communication Engineering Systems, Vijayawada, India, January 04-05, 2018. pp. 53-57, DOI: 10.1109/SPACES.2018.8316315
    [47] Q. Zhai, Y. Bai and D. Liu, “General Galois processor for transmitters in 5G/6G base stations,” China Communications, vol. 18, no. 10, pp. 129-134, October, 2021. DOI: 10.23919/JCC.2021.10.008
    [48] Y. Guo, S. Xie, Z. Liu, L. Yang, and D. Wang, “Parallel polar encoding in 5G communication,” in Proc. IEEE Symposium on Computers and Communications, Natal, Brazil, June 25-28, 2018. pp. 00064-00069, DOI: 10.1109/ISCC.2018.8538743
    [49] A. Ghaffari, M. Léonardon, A. Cassagne, C. Leroux, and Y. Savaria, “Toward high-performance implementation of 5G SCMA algorithms,” IEEE Access, vol. 7, pp. 10402-10414, 2019. DOI: 10.1109/ACCESS.2019.2891597
    [50] S. A. Damjancevic, S. A. Dasgupta, E. Matus, D. Utyanksy, P. van der Wolf, and G. P. Fettweis, “Flexible channel estimation for 3GPP 5G IoT on a vector digital signal processor,” in Proc. IEEE Workshop on Signal Processing Systems, Coimbra, Portugal, October 19-21, 2021. pp. 12-17, DOI: 10.1109/SiPS52927.2021.00011
    [51] Y. Xu, W. Wang, Z. Xu, and X. Gao, “AVX-512 based software decoding for 5G LDPC codes,” in Proc. IEEE International Workshop on Signal Processing Systems, Nanjing, China, October 20-23, 2019. pp. 54-59, DOI: 10.1109/SiPS47522.2019.9020587
    [52] S. A. Damjancevic, E. Matus, D. Utyansky, P. van der Wolf, and G. P. Fettweis, “Channel estimation for advanced 5G/6G use cases on a vector digital signal processor,” IEEE Open Journal of Circuits and Systems, vol. 2, pp. 265-277, 2021. DOI: 10.1109/OJCAS.2020.3047007
    [53] Y. Li, D. Liu, X. Zhou, and W. Chen, “Speed up QC-LDPC decoder through memory subsystem optimization,” in Proc. International Conference on Electronic Communication and Artificial Intelligence, Zhuhai, China, January 14-16, 2022. pp. 97-102, DOI: 10.1109/IWECAI55315.2022.00027
    [54] Y. Fei, H. Cao, Y. Wu, X. Chen, and L. Chen, “DOA estimation in non-uniform noise using matrix completion via alternating projection,” IEEE Open Journal of Antennas and Propagation, vol. 2, pp. 281-285, February, 2021. DOI: 10.1109/OJAP.2021.3059474
    [55] L. Lin, X. Wang, X. Lan, and Z. Han, “Alternating projection based unitary matrix completion method for DOA estimation in nonuniform noise,” International Conference on Information Communication and Signal Processing, Shenzhen, China, November, 2022. pp. 31-35, DOI: 10.1109/ICICSP55539.2022.10050679
    [56] L. Zhao, H. Liu, Y. Li, and Y. Zhou, “DOA estimation under sensor gain and phase uncertainties,” in Proc. International Conference on Estimation, Detection and Information Fusion, Harbin, January 10-11, 2015. pp. 209-213, DOI: 10.1109/ICEDIF.2015.7280192
    [57] M. Jomoto, N. Kikuma, and K. Sakakibara, “Simultaneous estimation of DOA and angular spread of incident radio waves by DOA-Matrix method with SLS and SAGE algorithms,” in Proc. International Symposium on Antennas and Propagation, Hobart, TAS, Australia, November 09-12, 2015. pp. 1-2
    [58] G. Liang, K. Zhang, J. Fu, and W. Ma, “Estimation of 2-D DOA joint frequency of signal via a single vector hydrophone,” in Proc. IEEE International Conference on Cloud Computing and Intelligence Systems, Hangzhou, China, October 30, 2012. pp. 821-825, DOI: 10.1109/CCIS.2012.6664290
    [59] Y. Wang, T. Fu, M. Gao, and S. Ding, “DOA estimation by exploiting spatial and Doppler sparsity,” in Proc. IET International Radar Conference, Xi’an, China, April 14-16, 2013. pp. 1-4, DOI: 10.1049/cp.2013.0418
    [60] H. Zhang and H. Chen, “Improved 2-D DOA estimation algorithm for L-shaped array using cross-correlation matrix,” in Proc. IET International Conference on Wireless, Mobile & Multimedia Networks, Beijing, China, November 17-20, 2017. pp. 60-63, DOI: 10.1049/cp.2017.0594
    [61] Y. Zhao, P. Chen, Z. Cao, and Y. Zhang, “Programmable metasurface-based DOA estimation using atomic norm minimization,” in Proc. IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Singapore, Singapore, December 04-10, 2021. pp. 861-862, DOI: 10.1109/APS/URSI47566.2021.9704810
    [62] P. Li, J. Li, and G. Zhao, “Low complexity DOA estimation for massive uca with single snapshot,” Journal of Systems Engineering and Electronics, vol. 33, no. 1, pp. February 22-27, 2022. DOI: 10.23919/JSEE.2022.000003
    [63] C. Ying, W. Xiang, and H. Zhitao, “Underdetermined DOA estimation via multiple time-delay covariance matrices and deep residual network,” Journal of Systems Engineering and Electronics, vol. 32, no. 6, pp. 1354-1363, December, 2021. DOI: 10.23919/JSEE.2021.000115
    [64] L. Huang and Y. L. Lu, “Multiple sources DOA and polarization estimations using vector circular array,” in Proc. IET International Radar Conference, Xi’an, China, 2013. pp. 1-4, DOI: 10.1049/cp.2013.0346
    [65] J. Li, M. Shen and D. Jiang, “DOA estimation based on combined ESPRIT for co-prime array,” in Proc. IEEE Asia-Pacific Conference on Antennas and Propagation, Kaohsiung, Taiwan, July 26-29, 2016. pp. 117-118, DOI: 10.1109/APCAP.2016.7843126
    [66] E. Aboutanios and A. Hassanien, “Low-cost beamforming-based DOA estimation with model order determination,” in Proc. IEEE Sensor Array and Multichannel Signal Processing Workshop, Hangzhou, China, June 08-11, 2020. pp. 1-5, DOI: 10.1109/SAM48682.2020.9104347

    無法下載圖示 全文公開日期 2026/05/06 (校內網路)
    全文公開日期 2026/05/06 (校外網路)
    全文公開日期 2026/05/06 (國家圖書館:臺灣博碩士論文系統)
    QR CODE