簡易檢索 / 詳目顯示

研究生: 王鴻偉
Hung-wei Wang
論文名稱: 使用三倍頻發射相位法於對比劑諧波影像
Third Harmonic Transmit Phasing on Contrast Harmonic Imaging
指導教授: 沈哲州
Che-Chou Shen
口試委員: 王士豪
Shyh-hau Wang
葉秩光
Chih-Kuang Yeh
李夢麟
Meng-Lin Li
黃騰毅
Teng-Yi Huang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 87
中文關鍵詞: 超音波影像組織諧波對比劑諧波影像對比劑三倍頻發射相位法
外文關鍵詞: Ultrasound imaging, Tissue harmonic, Contrast harmonic imaging, Contrast agents, Third harmonic transmit phasing
相關次數: 點閱:350下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在對比劑諧波影像上,由於背景組織也有著顯著的組織諧波信號產生,故使得對比劑諧波影像的對比度(contrast-to-tissue ratio, CTR)受到限制。為抑制組織諧波信號,我們可以利用三倍頻發射相位法使得組織諧波信號的頻率和成分(frequency-sum component)與頻率差成份(frequency-difference component)有一相反的相位,以產生相消性的組織諧波強度抑制,而對於對比劑而言,我們的結果也指出在三倍頻發射相位法中其抑制相位與組織有異而且抑制程度也比組織明顯減少,該現象乃基於對比劑非常不同於組織的獨特非線性響應。換言之,將外加的三倍頻信號搭配一適當的相位與振幅大小便可以有效地抑制組織諧波強度但維持一定的對比劑諧波信號強度,此時便能有效提升CTR。不過我們也發現諧波溢漏(harmonic leakage)會對影像對比度的改善造成妨礙,這時就必須使用脈衝反向技術(pulse-inversion)來移除諧波溢漏的影響。


    Harmonic detection of ultrasonic contrast agents provides limited contrast-to-tissue ratio (CTR) mainly because of background tissue harmonic signals. To suppress tissue harmonic amplitude, the method of third harmonic (3f0) transmit phasing can be utilized by phasing an additional 3f0 transmit signal to achieve effective cancellation between the frequency-sum component and the frequency-difference component of tissue harmonic signal. For contrast agents, however, our results indicate that the nonlinear responses from microbubbles behaves very differently in 3f0 transmit phasing. Specifically, the suppression phase for contrast microbubble deviates from that for tissue and moreover, the achievable suppression of contrast harmonic signal is markedly reduced. Consequently, with the selection of 3f0 transmit phase that leads to maximal tissue suppression, the CTR can be optimally improved in harmonic imaging. Nevertheless, the CTR improvement in 3f0 transmit phasing can be compromised when the tissue suppression decreases in the presence of spectral leakage. Consequently, multi-pulse sequences such as pulse-inversion are suggested for leakage removal in 3f0 transmit phasing.

    目錄 中文摘要 I Abstract II 誌謝 III 圖目錄 VI 表目錄 X 第一章 緒論 1 1-1 超音波影像基本原理 1 1-2 超音波對比劑的簡介與應用 8 1-3 超音波對比劑影像簡介 12 1-3-1 對比劑諧波信號 12 1-3-2 對比劑諧波影像 15 1-3-3 對比劑諧波影像之干擾: 組織諧波信號 23 1-4 對比劑諧波影像CTR提升之相關文獻探討 27 1-5 研究動機、目標與論文架構 35 第二章 三倍頻發射相位法 37 2-1 三倍頻發射相位法原理 37 2-2 三倍頻發射相位法用於組織偵測上 39 2-3 三倍頻發射相位法用於對比劑偵測上 43 第三章 研究方法 46 3-1 聲場模擬 46 3-1-1 組織聲場模擬 46 3-1-2 對比劑的聲場模擬 47 3-2 實驗架構 50 3-2-1 諧波量測與B-mode影像 50 3-2-2 對比劑微氣泡破裂程度評估 54 第四章 研究結果 56 4-1 諧波信號模擬 56 4-2 諧波振幅量測 63 4-3 B-mode諧波影像 66 4-4 對比劑微氣泡破裂程度評估 75 第五章 討論與結論 81 參考文獻 84

    [1] 沈哲州,「超音波組織非線性影像分析」,國立台灣大學碩士論文
    [2] 黃紹榮,「超音波對比劑假象之成因驗證」,國立台灣大學碩士論文
    [3] S. Umemura, K. Kawabata, K. Sasaki, N. Yumita, K. Umemura, and R. Nishigaki, “Recent advances in sonodynamic approach to cancer therapy,” Ultrasonics, Vol. 3, No. 3, pp. 187-191, 1996.
    [4] R. Bekeredjian, P.A. Grayburn and R.V. Shohet, “Use of ultrasound contrast agents for gene or drug delivery in cardiovascular medicine,” J. Am. Coll. Cardiol. , Vol.45, No. 3, pp. 329–335, 2005.
    [5] 賴寬裕,「以穴蝕效應為主之超音波治療:誘發與偵測」,國立台灣大學碩士論文
    [6] P. H. Chang, K. K. Shung, S. J. Wu et al., “Second harmonic imaging and harmonic Doppler measurements with Albunex许,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 42, no. 6, pp. 1020–1027, Nov. 1995.
    [7] N. de Jong, “Improvements in ultrasound contrast agents,” IEEE Eng. Med. Biol., vol. 15, no. 6, pp. 72–82, 1996.
    [8] W. T. Shi and F. Forsberg, “Ultrasonic characterization of the nonlinear properties of contrast microbubbles,” Ultrasound Med. Biol., Vol.26, No. 1, pp. 93–104, 2000.
    [9] M. Emmer, A. ven Wamel, D. E. Goertz and N. de Jong, “The onest microbubble vibration,” Ultrasound in Med. & Biol., Vol.33, No. 6, pp. 941–949, 2007.
    [10] 王裕鈞,「使用三倍頻發射相位法於波組織諧波信號分析」,國立台灣科技大學碩士論文
    [11] C. C. Shen and P. C. Li, “Harmonic leakage and image quality degradation in tissue harmonic imaging,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 48, no. 3, pp. 728–736, May 2001.
    [12] D. E. Goertz, A. Needles, R. Karshafian, A. S. Brown, P. N. Burns, and F. Stuart Foster, “High frequency nonlinear B-scan imaging of microbubble contrast agents,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 52, no. 1, pp. 65–78, Jan. 2005.
    [13] C. A. Cain, “Ultrasonic reflection mode imaging of the nonlinear parameter B/A: I. A theoretical basis,” J. Acoust. Soc. Amer., vol. 80, no. 1, pp. 28-32, July 1986.
    [14] R. T. Beyer and S. V. Letcher, Nonlinear acoustics. New York: Academic, 1969, pp. 202-230.
    [15] M. E. Haran and B. D. Cook, “Distortion of finite amplitude ultrasound in lossy media,” J. Acoust. Soc. Amer., vol. 73, no. 3, pp. 774-779, March 1983.
    [16] F. Tranquart, N. Grenier, V. Eder and L. Pourcelot, “Clinical use of ultrasound tissue harmonic imaging,” Ultrasound in Med. & Biol., Vol.25, No. 6, pp. 889–894, 1999.
    [17] A. Bouakaz, S. Frigstad, F.J. Ten Cate and N. de Jong, “Superharmonic imaging: A new imaging technique for improved contrast detection”, Ultrasound Med Biol, vol. 28, no. 1, pp. 59–68, 2002
    [18] T. Christopher, “Source prebiasing for improved second harmonic bubble-rResponse imaging,” IEEE Trans. Ultrason., Ferrroelec., Freq. Control., vol. 46, pp. 556–563, 1999.
    [19] R. J. Eckersley, C. T. Chin, and P. N. Burns “Optimising phase and amplitude modulation schemes for imaging microbubble contrast agents at low acoustic power,” Ultrasound in Med. & Bio.l, vol. 31, no. 2, pp. 213–219, 2005.
    [20] P. J. Phillips “Contrast pulse sequences(CPS):imaging nonlinear microbubble,” IEEE Ultrasonics symposium, pp. 1739–1745, 2001.
    [21] C.-C. Shen, Y.-C. Wang and Y.-C. Hsieh, “Third harmonic transmit phasing for tissue harmonic generation”, IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 54, no. 7, pp. 1370–1381, July 2007.
    [22] K. Morgan, M. Averkiou and K. Ferrara, “The effect of the phase of transmission on contrast agent echoes”, IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 45, no. 4, pp. 872–875, July 1998.
    [23] L. Hoff, “Nonlinear response of sonazoid. numerical simulation about pulse-inversion and subharmonics”, Proc. IEEE Ultrason. Symp., pp. 1885–1888, 2000.
    [24] N. de Jong, M. Emmer, C.T. Chin, A. Bouakaz, F. Mastik, D. Lohse and M. Versluis “Compression-only behavior of phospholipid-coated contrast bubbles,” Ultrasound in Med. & Bio.l, vol. 33, no. 4, pp. 653–656, 2007.
    [25] Yadong Li and J. A. Zagzebski, “A Frequency Domain Model for Generating B-Mode Images with Array Transducers,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 46, no. 3, pp. 690-698, May. 1999.
    [26] P. C. Li, C. C. Shen and S. W. Huang, “Waveform design for ultrasonic pulse-inversion fundamental imaging, ” Ultrason Imaging, vol. 29, pp. 73-86, 2007.
    [27] K. Chetty, J. V. Hajnal and R. J. Eckersley, “Investigating the nonlinear microbubble response to chirp encoded, multipulse sequences,” Ultrasound in Med. & Bio.l, vol. 32, no. 12, pp. 1887–1895, 2006.
    [28] C. C. Church, “The effects of an elastic solid surface layer on the radial pulsation of gas bubbles,” J. Acoust. Soc. Amer., vol. 97, no. 3, pp. 1510–1521, March 1995.
    [29] S. van der Meer, M. Versluis, D. Lohse, C.T. Chin, A. Bouakaz, and N. de Jong, “The resonance frequency of SonoVue™ as observed by high-speed optical imaging,” Proc. IEEE Ultrason. Symp., pp. 343–345, 2004.
    [30] K.-I Kawabata and S.-I. Umemura, “Use of second-harmonic superimposition to induce chemical effects of ultrasound, ”Journal of Physical Chemistry, vol. 100, no. 48, pp. 18784-18789, 1996
    [31] K.-I Kawabata and S.-I. Umemura, “Enhancement of Sonochemical Reactions by Second –Harmonic Superimposition, ” in Proc. IEEE Ultrason. Symp., pp. 917-920, 1993.
    [32] K.-I Kawabata, N. Sugita, K. Sasaki and S.-I. Umemura, “Effect of Periodic of Relative Phase in Second-Harmonic Superimposition on Inducing Cavitation in vitro and vivo, ” in Proc. IEEE Ultrason. Symp., pp. 740-743, 2003.
    [33] C. C. Shen, Y. C. Wang and C. K. Yeh, “Imaging parameters on third harmonic transmit phasing for tissue harmonic generation,” Ultrasound Med. Biol. 2008. (Accepted, Paper #:UMB_8146)

    QR CODE