研究生: |
陳泓明 Hung-ming Chen |
---|---|
論文名稱: |
以離子交換法合成CuFeO2光觸媒及其在可見光驅動水分解產氫之應用 Synthesis of nanocrystalline CuFeO2 by ion-exchange method and its applications on hydrogen generation via visible-light-driven photocatalytic water splitting |
指導教授: |
黃炳照
Bing-joe Hwang |
口試委員: |
周澤川
Tse-chuan Chou 蘇威年 Wei-nien Su |
學位類別: |
碩士 Master |
系所名稱: |
工程學院 - 化學工程系 Department of Chemical Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 64 |
中文關鍵詞: | 光觸媒 、可見光 、氫氣 、亞銅正鐵氧化物 、水分解 |
外文關鍵詞: | CuFeO2, visible-light-driven, Z-scheme |
相關次數: | 點閱:593 下載:7 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以離子交換法合成CuFeO¬2光觸媒,並藉由X-ray光繞射分析、穿透式電子顯微鏡以及可見光-近紅外光漫反射光譜,進行晶格結構、晶粒大小、能帶間隙以及光吸收特性之鑑定,而探討材料特性對CuFeO¬2光觸媒活性之影響。
研究結果發現,以EDFS•3H2O作為前驅物,在1 L/min流通空氣下,經530 ℃之兩次熱處理後,可成功地合成高結晶性之α-NaFeO2,其晶粒尺寸為5~10 nm。在氧氣充足之環境下,獲得高結晶性之α-NaFeO2產物,可歸因於β-NaFeO2之生成被有效地抑制。
以高結晶性之α-NaFeO2作為前驅物,在500 ℃之熔融CuCl中,經Na+-Cu+離子交換,可成功地合成純相之CuFeO2,其顆粒尺寸為10~20 nm。當離子交換程序之溫度提高時,CuFeO2晶粒沿著垂直c軸方向有較顯著之成長,則使CuFeO2產物裸露出較多與c軸正交之晶面,有利於CuFeO2吸收700 ~900 nm 之近紅外光。
本研究合成之CuFeO2產物受光激發後,CuFeO2顆粒內部之晶界,快速地捕捉光生電子與光生電洞,而形成再結合之場所,因此水分子則無法成功地在CuFeO2表面被還原成氫氣。
Nanocrystalline CuFeO2 has been synthesized successfully by ion-exchanging molten CuCl with layer-structured -NaFeO2. Crystal structure and domain size of CuFeO2 were characterized by XRD and TEM. Optical properties of CuFeO2 were determined by visible-infrared spectrum as well. In addition, Z-scheme photocatalytic water splitting without electron mediator carried out in a fluidized-bed photocatalyst reactor with as-synthesized CuFeO2 and Bi20TiO32 powder is proposed and measured in the present work.
First, nanocrystalline -NaFeO2 was synthesized successfully by thermal decomposition of EDFS under the air flow of 1 L/min and calcinations at 530 ℃ twice. The grain size of -NaFeO2 is measured about 5 ~ 10 nm by TEM. High crystallinity of -NaFeO2 results from suppressing the formation of -NaFeO2 under sufficient O2 condition.
Next, nanocrystalline CuFeO2 was synthesized successfully by ion-exchange method and domain size of CuFeO2 is about 5 ~ 10 nm determined by TEM. Domain boundaries of CuFeO2 result from sintering of grains in molten CuCl. Crystal growth of CuFeO2 is more significant in direction of a axis and b axis when operating temperature of molten CuCl increases. Near-IR absorbance of CuFeO2 increases slightly with increasing dimension of the plane in c axis.
The H2 production from the system could not be successfully detected. One reason could be attributed to the serious recombination of photon-generated electrons and holes at the grain boundaries of CuFeO2.
1. Kudo A, Miseki Y: Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews 2009, 38:253-278.
2. Fujishima A, Honda K: Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238:37-38.
3. Gratzel M: Photoelectrochemical cells. Nature 2001, 414:338-344.
4. Licht S: Multiple band gap semiconductor/electrolyte solar energy conversion. Journal of Physical Chemistry B 2001, 105:6281-6294.
5. Liu M, You W, Lei Z, Zhou G, Yang J, Wu G, Ma G, Luan G, Takata T, Hara M, et al: Water reduction and oxidation on Pt-Ru/Y2Ta2O5N2 catalyst under visible light irradiation. Chemical Communications 2004, 10:2192-2193.
6. Hara M, Nunoshige J, Takata T, Kondo JN, Domen K: Unusual enhancement of H2 evolution by Ru on TaON photocatalyst under visible light irradiation. Chemical Communications 2003, 9:3000-3001.
7. Kasahara A, Nukumizu K, Hitoki G, Takata T, Kondo JN, Hara M, Kobayashi H, Domen K: Photoreactions on LaTiO2N under visible light irradiation. Journal of Physical Chemistry A 2002, 106:6750-6753.
8. Sasaki Y, Nemoto H, Saito K, Kudo A: Solar water splitting using powdered photocatalysts driven by Z-schematic interparticle electron transfer without an electron mediator. Journal of Physical Chemistry C 2009, 113:17536-17542.
9. Maeda K, Domen K: New non-oxide photocatalysts designed for overall water splitting under visible light. Journal of Physical Chemistry C 2007, 111:7851-7861.
10. Abe R, Takata T, Sugihara H, Domen K: Photocatalytic overall water splitting under visible light by TaON and WO3 with an IO3-/I- shuttle redox mediator. Chemical Communications 2005:3829-3831.
11. Higashi M, Abe R, Teramura K, Takata T, Ohtani B, Domen K: Two step water splitting into H2 and O2 under visible light by ATaO2N (A = Ca, Sr, Ba) and WO3 with IO3-/I- shuttle redox mediator. Chemical Physics Letters 2008, 452:120-123.
12. Kato H, Hori M, Konta R, Shimodaira Y, Kudo A: Construction of Z-scheme type heterogeneous photocatalysis systems for water splitting into H2 and O2 under visible light irradiation. Chemistry Letters 2004, 33:1348-1349.
13. Younsi M, Aider A, Bouguelia A, Trari M: Visible light-induced hydrogen over CuFeO2 via S2O32- oxidation. Solar Energy 2005, 78:574-580.
14. Omeiri S, Gabes Y, Bouguelia A, Trari M: Photoelectrochemical characterization of the delafossite CuFeO2: Application to removal of divalent metals ions. Journal of Electroanalytical Chemistry 2008, 614:31-40.
15. Shannon RD, Rogers DB, Prewitt CT: Chemistry of noble metal oxides. I. Syntheses and properties of ABO2 delafossite compounds. Inorganic Chemistry 1971, 10:713-718.
16. Shannon RD, Gumerman PS: Effect of covalence on interatomic distances in Cu+, Ag+, Tl+ and Pb2+ halides and chalcogenides. Journal of Inorganic and Nuclear Chemistry 1976, 38:699-703.
17. Lalanne M, Barnabe A, Mathieu F, Tailhades P: Synthesis and thermostructural studies of a CuFe1-xCr xO2 delafossite solid solution with 0 ≤ × ≤ 1. Inorganic Chemistry 2009, 48:6065-6071.
18. Zhao Tr, Hasegawa M, Takei H: Growth and characterization of CuFeO2 single crystals. Journal of Crystal Growth 1995, 154:322-328.
19. Zhao TR, Hasegawa M, Koike M, Takei H: Crystal growth of CuFeO2 by the floating-zone method. Journal of Crystal Growth 1995, 148:189-192.
20. Zhao TR, Hasegawa M, Takei H: Phase equilibrium of the Cu-Fe-O system under Ar, CO2 and Ar+0.5% O2 atmospheres during CuFeO2 single-crystal growth. Journal of Materials Science 1996, 31:5657-5663.
21. Zhao TR, Hasegawa M, Takei H: Crystal growth and characterization of cuprous ferrite (CuFeO2). Journal of Crystal Growth 1996, 166:408-413.
22. Mugnier E, Barnabe A, Tailhades P: Synthesis and characterization of CuFeO2+δ delafossite powders. Solid State Ionics 2006, 177:607-612.
23. Kakihana M, Milanova MM, Arima M, Okubo T, Yashima M, Yoshimura M: Polymerized complex route to synthesis of pure Y2Ti2O7 at 750°C using yttrium-titanium mixed-metal citric acid complex. Journal of the American Ceramic Society 1996, 79:1673-1676.
24. Arima M, Kakihana M, Nakamura Y, Yashima M, Yoshimura M: Polymerized complex route to barium titanate powders using barium-titanium mixed-metal citric acid complex. Journal of the American Ceramic Society 1996, 79:2847-2856.
25. Kakihana M, Okubo T, Arima M, Nakamura Y, Yashima M, Yoshimura M: Polymerized complex route to the synthesis of pure SrTiO3 at reduced temperatures: Implication for formation of Sr-Ti heterometallic citric acid complex. Journal of Sol-Gel Science and Technology 1998, 12:95-109.
26. Roy S, Sigmund W, Aldinger F: Nanostructured yttria powders via gel combustion. Journal of Materials Research 1999, 14:1524-1531.
27. Hyeon T, Chung Y, Park J, Lee SS, Kim YW, Park BH: Synthesis of highly crystalline and monodisperse cobalt ferrite nanocrystals. Journal of Physical Chemistry B 2002, 106:6831-6833.
28. Marinescu G, Patron L, Carp O, Diamandescu L, Stanica N, Meghea A, Brezeanu M, Grenier JC, Etournea J: Polynuclear coordination compounds as precursors for CuFe2O4. Journal of Materials Chemistry 2002, 12:3458-3462.
29. Shirane T, Kanno R, Kawamoto Y, Takeda Y, Takano M, Kamiyama T, Izumi F: Structure and physical properties of lithium iron oxide, LiFeO2, synthesized by ionic exchange reaction. Solid State Ionics 1995, 79:227-233.
30. Szilagyi PA, Madarasz J, Kuzmann E, Vertes A, Molnar G, Bousseksou A, Sharma VK, Homonnay Z: Thermal stability of the FeIIIEDTA complex in its monomeric form. Thermochimica Acta 2008, 479:53-58.
31. Okamoto S: Crystallization and phase transformation of sodium orthoferrites. Journal of Solid State Chemistry 1981, 39:240-245.
32. Coker VS, Bell AMT, Pearce CI, Pattrick RAD, van der Laan G, Lloyd JR: Time-resolved synchrotron powder X-ray diffraction study of magnetite formation by the Fe(III)-reducing bacterium Geobacter sulfurreducens. American Mineralogist 2008, 93:540-547.
33. McQueen T, Huang Q, Lynn JW, Berger RF, Klimczuk T, Ueland BG, Schiffer P, Cava RJ: Magnetic structure and properties of the S=5/2 triangular antiferromagnet α-NaFeO2. Physical Review B - Condensed Matter and Materials Physics 2007, 76.
34. El Ataoui K, Doumerc JP, Ammar A, Gravereau P, Fournes L, Wattiaux A, Pouchard M: Preparation, structural characterization and mossbauer study of the CuFe1-xVxO2 (0 ≤ x ≤ 0.67) delafossite-type solid solution. Solid State Sciences 2003, 5:1239-1245.