簡易檢索 / 詳目顯示

研究生: 徐維廷
Wei-Ting Hsu
論文名稱: 基於啟發式演算法於感應馬達系統識別及故障偵測
Heuristic Algorithm on Induction Motor System Identification and Fault Detection
指導教授: 藍振洋
Chen-Yang Lan
口試委員: 藍振洋
劉孟昆
劉耀先
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 159
中文關鍵詞: 啟發式演算法模型辨識訊號分析T 檢定Bonett’s 檢定感應馬達故障診斷
外文關鍵詞: heuristic methods, system identification,, signal analysis, T test, Bonett’s test, induction motor, Fault detection
相關次數: 點閱:248下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出基於啟發式演算法之模型參數識別及故障偵測方法。本研究論文中發現混沌動態粒子最佳化方法優於其他一般的基因演算法和差分進化演算法。因此,可藉由此方法估測系統模型參數瞭解系統狀態,並透過T檢定和Bonett’s檢定判定損壞與健康馬達參數平均值與標準差的變異,瞭解系統異常屬於機械損壞或電機損壞。當機械損壞發生時,其參數平均值和標準差並沒有顯著差別,然而當電機損壞發生時,參數平均值和標準差有顯著差別。此外,本研究也透過殘差分析了解整體馬達狀況。隨著較高的殘差出現,代表著損壞越嚴重。同時也比較殘差訊號分析與量測訊號分析,從中發現,殘差訊號相較量測訊號對於損壞現象較為敏感且較不受雜訊影響。所以殘差分析相較量測訊號分析能放大損壞特徵,幫助發現初期異常。


    This research investigates system identification and fault detection on induction motor using heuristic methods. In this paper, we find out that the chaotic dynamical particle swarm optimization (CDPSO) method is better than other heuristic methods such as genetic algorithm and differential evolution algorithm. Therefore, the CDPSO method is applied on induction motor system parameter identification to understand the system’s condition. Moreover, T test and Bonett’s test are also applied to the identified parameters to determine the difference between healthy motor and failure motor. According to the changing pattern of estimated average and variance from resistance and inductance of induction motor, electrical anomaly can be isolated. On the other hand, mechanical fault appeared in the induction motor cannot cause readable parameter difference in the estimated values. As a result, induction motor mechanical fault and electrical fault can be detected and isolated by examining the variation of estimated parameter average value and variance. Furthermore, residual analysis is also applied to detect overall anomaly of induction motor. With increased residual value, it generally implies developing fault of some failures in the motor. In addition, by comparing the result of measurement signal analysis and residual signal analysis, the analysis using residual signal is not only more sensitive, but also more robust to the noise. Thus, residual signal analysis can provide more sensitive features clearly to observe the incipient fault.

    摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XII 第一章 緒論 1 1.1前言與背景 1 1.2文獻回顧 2 1.2.1 馬達電流特徵分析 2 1.2.2 馬達模型式分析 3 1.2.3 系統識別 4 1.3 研究目的及論文架構 9 第二章 馬達模型 11 2.1 簡介 11 2.2 三相感應馬達abc軸之動態方程式 11 2.3 三相感應馬達qd0 軸之轉換方程式 15 2.4 三相感應馬達qd0 軸之動態方程式 18 2.5 三相同步發電機qd0 軸之動態方程式 25 第三章 感應馬達訊號分析 31 3.1快速傅立葉轉換(Fast Fourier Transform) 31 3.2 帕氏轉換(Park’s Transform) 33 3.3 殘差分析(Residual Analysis) 35 第四章 系統識別方法 37 4.1 基因演算法最佳化(Genetic Algorithm) 38 4.2 差分進化最佳化(Differential Evolution) 40 4.3 粒子群最佳化(Particle Swarm Optimization) 42 4.3.1一般粒子群最佳化 42 4.3.2 動態粒子群最佳化 45 4.3.3 渾沌粒子群最佳化 45 4.3.4 渾沌動態粒子群最佳化 46 4.4 模擬結果 47 4.4.1 基因演算法最佳化模擬結果 50 4.4.2 差分進化最佳化模擬結果 52 4.4.3 混沌動態粒子群最佳化模擬結果 54 第五章 統計檢定 68 5.1 統計基礎 69 5.2 常態檢定(Normality-Test) 72 5.3 T 檢定(T-Test) 74 5.4 Bonett‘s 檢定(Bonett’s Test) 78 第六章 實驗結果 81 6.1 實驗規劃流程 81 6.2 實驗架設 83 6.3 實驗結果 91 6.3.1 不同負載下參數估測結果 93 6.3.2 健康與損壞實驗參數估測比較 95 6.3.3 健康與損壞殘差分析 108 6.4 實驗結果與討論 127 第七章 結論與未來展望 129 7.1 結論 129 7.2 研究貢獻 129 7.3 未來展望 130 參考文獻 131 附錄 142

    [1] V. P.Raj, K.Natarajan, andS. T. G.Girikumar, “Induction motor fault detection and diagnosis by vibration analysis using MEMS accelerometer,” Proc. - 2013 Int. Conf. Emerg. Trends Commun. Control. Signal Process. Comput. Appl. IEEE-C2SPCA 2013, pp. 7–12, 2013, doi: 10.1109/C2SPCA.2013.6749391.
    [2] A. K.Al-Musawi, F.Anayi, andM.Packianather, “Three-phase induction motor fault detection based on thermal image segmentation,” Infrared Phys. Technol., vol. 104, p. 103140, 2020, doi: 10.1016/j.infrared.2019.103140.
    [3] A.Glowacz, “Acoustic based fault diagnosis of three-phase induction motor,” Appl. Acoust., vol. 137, no. 11, pp. 82–89, 2018, doi: 10.1016/j.apacoust.2018.03.010.
    [4] H.Henao, C.Demian, andG. A.Capolino, “A frequency-domain detection of stator winding faults in induction machines using an external flux sensor,” IEEE Trans. Ind. Appl., vol. 39, no. 5, pp. 1272–1279, 2003, doi: 10.1109/TIA.2003.816531.
    [5] A.Siddique, G. S.Yadava, andB.Singh, “A review of stator fault monitoring techniques of induction motors,” IEEE Trans. Energy Convers., vol. 20, no. 1, pp. 106–114, 2005, doi: 10.1109/TEC.2004.837304.
    [6] N.-C. M. and F. D. of I. M. _ E. S. A.-C. and H. (2018)Ibrahim, Rosdiazli_ Irfan, Muhammad_ Saad, Condition Monitoring and Faults Diagnosis of Induction Motors _ Electrical Signature Analysis-Chapman and Hall_CRC (2018), vol. 171, no. 9. 2018.
    [7] G. D.Bergland, “A guided tour of the fast Fourier Transform,” IEEE Spectr., vol. 6, no. 7, pp. 41–52, 1969, doi: 10.1109/MSPEC.1969.5213896.
    [8] E. O.Brigham andR. E.Morrow, “The fast Fourier transform,” IEEE Spectr., vol. 4, no. 12, pp. 63–70, 1967, doi: 10.1109/MSPEC.1967.5217220.
    [9] W. T.Thomson andM.Fenger, “William T. Thomson and Mark Fenger,” IEEE Ind. Appl. Mag., no. August, 2001.
    [10] D.Miljković, “Brief Review of Motor Current,” no. June, pp. 15–16, 24, 2015.
    [11] L.Eren andM. J.Devaney, “Bearing Damage Detection via Wavelet Packet Decomposition of the Stator Current,” IEEE Trans. Instrum. Meas., vol. 53, no. 2, pp. 431–436, 2004, doi: 10.1109/TIM.2004.823323.
    [12] B. A. R.Detection, “Broken bar detection,” vol. 00, no. C, pp. 95–99, 2001.
    [13] Z.Ye, B.Wu, andA.Sadeghian, “Current Signature Analysis of Induction Motor Mechanical Faults by Wavelet Packet Decomposition,” IEEE Trans. Ind. Electron., vol. 50, no. 6, pp. 1217–1228, 2003, doi: 10.1109/TIE.2003.819682.
    [14] P.Flandrin, G.Rilling, andP.Gonçalvés, “Empirical mode decomposition as a filter bank,” IEEE Signal Process. Lett., vol. 11, no. 2 PART I, pp. 112–114, 2004, doi: 10.1109/LSP.2003.821662.
    [15] G.Rilling, P.Flandrin, andP.Goncalves, “On empirical mode decomposition and its algorithms,” IEEE-EURASIP Work. nonlinear signal image Process., vol. 3, pp. 8–11, 2003.
    [16] M.Klingspor, “Hilbert transform : Mathematical theory and applications to signal processing,” p. 76, 2015.
    [17] J.Antonino-Daviu, P. J.Rodriguez, M.Riera-Guasp, A.Arkkio, J.Roger-Folch, andR. B.Pérez, “Transient detection of eccentricity-related components in induction motors through the Hilbert-Huang Transform,” Energy Convers. Manag., vol. 50, no. 7, pp. 1810–1820, 2009, doi: 10.1016/j.enconman.2009.03.008.
    [18] V. K.Rai andA. R.Mohanty, “Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert-Huang transform,” Mech. Syst. Signal Process., vol. 21, no. 6, pp. 2607–2615, 2007, doi: 10.1016/j.ymssp.2006.12.004.
    [19] M.Abd-el-Malek, A. K.Abdelsalam, andO. E.Hassan, “Induction motor broken rotor bar fault location detection through envelope analysis of start-up current using Hilbert transform,” Mech. Syst. Signal Process., vol. 93, pp. 332–350, 2017, doi: 10.1016/j.ymssp.2017.02.014.
    [20] G. L.-T. and L. E. B. da S.Erik Leandro Bonaldi, Levy Ely de Lacerda de Oliveira, Jonas Guedes Borges da Silva, “Predictive Maintenance by Electrical Signature Analysis to Induction Motors Chapter,” 2012.
    [21] M.Blödt, M.Chabert, J.Regnier, andJ.Faucher, “Mechanical load fault detection in induction motors by stator current time-frequency analysis,” IEEE Trans. Ind. Appl., vol. 42, no. 6, pp. 1454–1463, 2006, doi: 10.1109/TIA.2006.882631.
    [22] A. R.Mohanty andC.Kar, “Fault detection in a multistage gearbox by demodulation of motor current waveform,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1285–1297, 2006, doi: 10.1109/TIE.2006.878303.
    [23] D. G.Ece andM.Baaran, “Condition monitoring of speed controlled induction motors using wavelet packets and discriminant analysis,” Expert Syst. Appl., vol. 38, no. 7, pp. 8079–8086, Jul.2011, doi: 10.1016/j.eswa.2010.12.149.
    [24] R.Shao, W.Hu, Y.Wang, andX.Qi, “The fault feature extraction and classification of gear using principal component analysis and kernel principal component analysis based on the wavelet packet transform,” Meas. J. Int. Meas. Confed., vol. 54, pp. 118–132, 2014, doi: 10.1016/j.measurement.2014.04.016.
    [25] A.Widodo andB. S.Yang, “Wavelet support vector machine for induction machine fault diagnosis based on transient current signal,” Expert Syst. Appl., vol. 35, no. 1–2, pp. 307–316, 2008, doi: 10.1016/j.eswa.2007.06.018.
    [26] A.Widodo andB. S.Yang, “Support vector machine in machine condition monitoring and fault diagnosis,” Mech. Syst. Signal Process., vol. 21, no. 6, pp. 2560–2574, 2007, doi: 10.1016/j.ymssp.2006.12.007.
    [27] P.Konar andP.Chattopadhyay, “Bearing fault detection of induction motor using wavelet and Support Vector Machines (SVMs),” Appl. Soft Comput. J., vol. 11, no. 6, pp. 4203–4211, 2011, doi: 10.1016/j.asoc.2011.03.014.
    [28] S.Haidong, J.Hongkai, L.Xingqiu, andW.Shuaipeng, “Intelligent fault diagnosis of rolling bearing using deep wavelet auto-encoder with extreme learning machine,” Knowledge-Based Syst., vol. 140, pp. 1–14, 2018, doi: 10.1016/j.knosys.2017.10.024.
    [29] N.Rinanto et al., “Rotor bars fault detection by DFT spectral analysis and Extreme Learning Machine,” 2016 Int. Symp. Electron. Smart Devices, ISESD 2016, pp. 103–108, 2017, doi: 10.1109/ISESD.2016.7886701.
    [30] A.Jawadekar, S.Paraskar, S.Jadhav, andG.Dhole, “Artificial neural network-based induction motor fault classifier using continuous wavelet transform,” Syst. Sci. Control Eng., vol. 2, no. 1, pp. 684–690, 2014, doi: 10.1080/21642583.2014.956266.
    [31] F.Filippetti, G.Franceschini, C.Tassoni, andP.Vas, “Recent developments of induction motor drives fault diagnosis using AI techniques,” IEEE Trans. Ind. Electron., vol. 47, no. 5, pp. 994–1004, 2000, doi: 10.1109/41.873207.
    [32] A.Bouguerne, A.Lebaroud, A.Medoued, andA.Boukadoum, “Classification of induction machine faults by K-nearest neighbor,” ELECO 2011 - 7th Int. Conf. Electr. Electron. Eng., pp. I-363-I–366, 2011.
    [33] C. T.Yiakopoulos, K. C.Gryllias, andI. A.Antoniadis, “Rolling element bearing fault detection in industrial environments based on a K-means clustering approach,” Expert Syst. Appl., vol. 38, no. 3, pp. 2888–2911, 2011, doi: 10.1016/j.eswa.2010.08.083.
    [34] T.Aroui, Y.Koubaa, andA.Toumi, “Clustering of the Self-Organizing Map based Approach in Induction Machine Rotor Faults Diagnostics,” Leonardo J. Sci., no. 15, pp. 1–14, 2009.
    [35] L. F.Gonçalves, J. L.Bosa, T. R.Balen, M. S.Lubaszewski, E. L.Schneider, andR. V.Henriques, “Fault detection, diagnosis and prediction in electrical valves using self-organizing maps,” J. Electron. Test. Theory Appl., vol. 27, no. 4, pp. 551–564, 2011, doi: 10.1007/s10836-011-5220-0.
    [36] C. H.DeAngelo, G. R.Bossio, S. J.Giaccone, M. I.Valla, J. A.Solsona, andG. O.García, “Online model-based stator-fault detection and identification in induction motors,” IEEE Trans. Ind. Electron., vol. 56, no. 11, pp. 4671–4680, 2009, doi: 10.1109/TIE.2009.2012468.
    [37] S.Duvvuri andK.Detroja, “Model-based broken rotor bars fault detection and diagnosis in squirrel-cage induction motors,” Conf. Control Fault-Tolerant Syst. SysTol, vol. 2016-Novem, pp. 537–539, 2016, doi: 10.1109/SYSTOL.2016.7739804.
    [38] H.Rodríguez-Cortés, C. N.Hadjicostis, andA. M.Stanković, “Model-based broken rotor bar detection on an IFOC driven squirrel cage induction motor,” Proc. Am. Control Conf., vol. 4, pp. 3094–3099, 2004, doi: 10.1109/ACC.2004.182760.
    [39] A. G.Parlos, K.Kim, andR.Bharadwaj, “Detection of induction motor faults - Combining signal-based and model-based techniques,” Proc. Am. Control Conf., vol. 6, pp. 4531–4536, 2002.
    [40] A. H. S.Duyar A. Albas E. ,Durakbasa O., T., “Model-Based Fault Detection System for Electric Motors,” United States Pat., vol. 6,014,59, no. US006014598A, 2000.
    [41] J. S.Rik Pintelon, System Identification_ A Frequency Domain Approach, Second Edition, vol. 185. 2012.
    [42] L.Ljung, “System identification,” Wiley Encycl. Electr. Electron. Eng., pp. 1–19, 1999.
    [43] R. M.Johnstone, C.Richard Johnson, R. R.Bitmead, andB. D. O.Anderson, “Exponential convergence of recursive least squares with exponential forgetting factor,” Syst. Control Lett., vol. 2, no. 2, pp. 77–82, 1982, doi: 10.1016/S0167-6911(82)80014-5.
    [44] Y.Liu andF.Ding, “Convergence properties of the least squares estimation algorithm for multivariable systems,” Appl. Math. Model., vol. 37, no. 1–2, pp. 476–483, 2013, doi: 10.1016/j.apm.2012.03.007.
    [45] L. L. and G. L.LaliW, “Application of the extended Kalman filter to parameter estimation of induction motors,” 1993.
    [46] J.Laowanitwattana andS.Uatrongjit, “Estimation of induction motor states and parameters based on Extended Kalman Filter considering parameter constraints,” 2016 Int. Symp. Power Electron. Electr. Drives, Autom. Motion, SPEEDAM 2016, pp. 755–760, 2016, doi: 10.1109/SPEEDAM.2016.7525829.
    [47] A.Lalami, R.Wamkeue, I.Kamwa, M.Saad, andJ. J.Beaudoin, “Unscented Kalman filter for non-linear estimation of induction machine parameters,” IET Electr. Power Appl., vol. 6, no. 9, pp. 611–620, 2012, doi: 10.1049/iet-epa.2012.0026.
    [48] D.Whitley, “A genetic algorithm tutorial,” Stat. Comput., vol. 4, no. 2, pp. 65–85, 1994, doi: 10.1007/BF00175354.
    [49] S.Kiranyaz, “Particle swarm optimization,” Adapt. Learn. Optim., vol. 15, pp. 45–82, 2014, doi: 10.1007/978-3-642-37846-1_3.
    [50] K.VPrice andK.VPrice, “Differential evolution,” Nat. Comput. Ser., vol. 28, pp. 83–93, 2015, doi: 10.1007/978-3-662-43631-8_6.
    [51] M.Gyori et al., Assessing support needs for developing an app-based assistive system for enhancing independence in the autism spectrum: Results from a mixed-mode study, vol. 10896 LNCS. 2018.
    [52] H.Eskandar, A.Sadollah, A.Bahreininejad, andM.Hamdi, “Water cycle algorithm - A novel metaheuristic optimization method for solving constrained engineering optimization problems,” Comput. Struct., vol. 110–111, pp. 151–166, 2012, doi: 10.1016/j.compstruc.2012.07.010.
    [53] J.Debenham andR. R.Wagner, Lecture Notes in Computer Science: Preface, vol. 3588. 2005.
    [54] R.Hassan, B.Cohanim, O.DeWeck, andG.Venter, “A comparison of particle swarm optimization and the genetic algorithm,” Collect. Tech. Pap. - AIAA/ASME/ASCE/AHS/ASC Struct. Struct. Dyn. Mater. Conf., vol. 2, no. April, pp. 1138–1150, 2005.
    [55] E.Kita andY.BinShin, “Application of particle swarm optimization to packing problem,” Handb. Genet. Algorithms New Res., pp. 333–346, 2012.
    [56] -Galvan, F.R., V.Barranco, J. C.Galvan, S.Batlle, Sebastian FeliuFajardo, andGarcía, “We are IntechOpen , the world ’ s leading publisher of Open Access books Built by scientists , for scientists TOP 1 %,” Intech, vol. i, no. tourism, p. 13, 2016, doi: http://dx.doi.org/10.5772/57353.
    [57] H.Modares, A.Alfi, andM. M.Fateh, “Parameter identification of chaotic dynamic systems through an improved particle swarm optimization,” Expert Syst. Appl., vol. 37, no. 5, pp. 3714–3720, 2010, doi: 10.1016/j.eswa.2009.11.054.
    [58] Bansal et al., “Inertia Weight Strategies in Particle Swarm Inertia Weight Strategies in Particle Swarm,” Pap. Conf. Technol. Inf. Kharagpur, Technol., no. May 2014, p. 7, 2011, doi: 10.1109/NaBIC.2011.6089659.
    [59] B.Liu, L.Wang, Y. H.Jin, F.Tang, andD. X.Huang, “Improved particle swarm optimization combined with chaos,” Chaos, Solitons and Fractals, vol. 25, no. 5, pp. 1261–1271, 2005.
    [60] J. J.Liang andP. N.Suganthan, “Dynamic Multi-Swarm Particle Swarm Optimizer,” pp. 1–6, 2005.
    [61] Z. H.Zhan, J.Zhang, Y.Li, andH. S. H.Chung, “Adaptive particle swarm optimization,” IEEE Trans. Syst. Man, Cybern. Part B Cybern., vol. 39, no. 6, pp. 1362–1381, 2009.
    [62] D. C.Huynh andM. W.Dunnigan, “Parameter estimation of an induction machine using advanced particle swarm optimisation algorithms,” IET Electr. Power Appl., vol. 4, no. 9, pp. 748–760, 2010.
    [63] H. M.Emara, W.Elshamy, andA.Bahgat, “Parameter Identification of Induction Motor Using Modified Particle Swarm Optimization Algorithm,” IEEE Int. Symp. Ind. Electron., pp. 841–847, 2008.
    [64] R. K.Ursem andP.Vadstrup, “Parameter identification of induction motors using stochastic optimization algorithms,” Appl. Soft Comput. J., vol. 4, no. 1, pp. 49–64, 2004.
    [65] M.Iwan, R.Akmeliawati, T.Faisal, andH. M. A. A.Al-Assadi, “Performance comparison of differential evolution and particle swarm optimization in constrained optimization,” Procedia Eng., vol. 41, no. Iris, pp. 1323–1328, 2012.
    [66] R. K.Ursem andP.Vadstrup, “Parameter identification of induction motors using differential evolution,” 2003 Congr. Evol. Comput. CEC 2003 - Proc., vol. 2, pp. 790–796, 2003.
    [67] M.Arslan, M.Çunkaş, andT.Saǧ, “Determination of induction motor parameters with differential evolution algorithm,” Neural Comput. Appl., vol. 21, no. 8, pp. 1995–2004, 2012.
    [68] Chee-Mun_Ong, “Dynamic Simulations of Electric Machines.” pp. 1–626, 1998.
    [69] M.Heideman, D.Johnson, andC.Burrus, “Gauss and the history of the fast Fourier transform,” IEEE ASSP Mag., vol. 1, no. 4, pp. 14–21, 1984.
    [70] W. T.Culbert, Ian_ Thomson, “Current Signature Analysis for Condition Monitoring of Cage Induction Motors - Industrial Application and Case Histories.” 2017.
    [71] A. J.Marques Cardoso, S. M. A.Cruz, andD. S. B.Fonseca, “Inter-turn stator winding fault diagnosis in three-phase induction motors, by Park’s vector approach,” IEEE Trans. Energy Convers., vol. 14, no. 3, pp. 595–598, 1999, doi: 10.1109/60.790920.
    [72] H.Nejjari andM. E. H.Benbouzid, “Monitoring and diagnosis of induction motors electrical faults using a current Park’s vector pattern learning approach,” IEEE Trans. Ind. Appl., vol. 36, no. 3, pp. 730–735, 2000, doi: 10.1109/28.845047.
    [73] A. J. M.Cardoso andE. S.Saraiva, “Computer-aided detection of airgap eccentricity in operating three-phase induction motors by park’s vector approach,” IEEE Trans. Ind. Appl., vol. 29, no. 5, pp. 897–901, 1993, doi: 10.1109/28.245712.
    [74] S.BenSalem, W.Touti, K.Bacha, andA.Chaari, “Induction motor mechanical fault identification using Park’s vector approach,” 2013 Int. Conf. Electr. Eng. Softw. Appl. ICEESA 2013, 2013, doi: 10.1109/ICEESA.2013.6578381.
    [75] T.Surveillance, “INTERNATIONAL STANDARD Condition monitoring and diagnostics qualification and assessment of,” vol. 2014, 2014.
    [76] J.Brest, S.Greiner, B.Bošković, M.Mernik, andV.Zumer, “Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems,” IEEE Trans. Evol. Comput., vol. 10, no. 6, pp. 646–657, 2006, doi: 10.1109/TEVC.2006.872133.
    [77] A. P.Piotrowski, J. J.Napiorkowski, andA. E.Piotrowska, “Population size in Particle Swarm Optimization,” Swarm Evol. Comput., vol. 58, no. March 2019, p. 100718, 2020, doi: 10.1016/j.swevo.2020.100718.
    [78] Y.Shi andR. C.Eberhart, “Parameter selection in particle swarm optimization,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 1447, pp. 591–600, 1998, doi: 10.1007/bfb0040810.
    [79] A.Rezaee Jordehi andJ.Jasni, “Parameter selection in particle swarm optimisation: A survey,” J. Exp. Theor. Artif. Intell., vol. 25, no. 4, pp. 527–542, 2013, doi: 10.1080/0952813X.2013.782348.
    [80] A.Nickabadi, M. M.Ebadzadeh, andR.Safabakhsh, “A novel particle swarm optimization algorithm with adaptive inertia weight,” Appl. Soft Comput. J., vol. 11, no. 4, pp. 3658–3670, 2011.
    [81] B.Alatas, E.Akin, andA. B.Ozer, “Chaos embedded particle swarm optimization algorithms,” Chaos, Solitons and Fractals, vol. 40, no. 4, pp. 1715–1734, 2009.
    [82] E. A. P.Sheldon M Ross, “A second course in probability,” Choice Reviews Online, vol. 45, no. 05. pp. 45-2661-45–2661, 2008, doi: 10.5860/choice.45-2661.
    [83] L. I.Ogunleye, B. A.Oyejola, andK. O.Obisesan, “Comparison of Common Tests for Normality,” Int. J. Probab. Stat. 2018, vol. 7, no. August, pp. 130–137, 2018, doi: 10.5923/j.ijps.20180705.02.
    [84] B. W.Yap andC. H.Sim, “Comparisons of various types of normality tests,” J. Stat. Comput. Simul., vol. 81, no. 12, pp. 2141–2155, 2011.
    [85] L.Pereira‐Mendoza andA.Dunkels, “Stem‐and‐Leaf Plots in the Primary Grades,” Teach. Stat., vol. 11, no. 2, pp. 34–37, 1989, doi: 10.1111/j.1467-9639.1989.tb00045.x.
    [86] N.Population, “Quantile-Quantile Plot ( QQ-plot ) and the Normal Probability Plot Section 6-6 : Normal Probability Plot,” vol. 2377, no. Winter, pp. 1–8, 2012.
    [87] A. S. S.Shapiro andM. B.Wilk, “An Analysis of Variance Test for Normality ( Complete Samples ),” Biometrika, vol. 52, no. 3/4, pp. 591–611, 1965.
    [88] S. andWilk, “THE SHAPIRO-WILK AND RELATED TESTS FOR NORMALITY Given a sample X 1 , . . . , X,” vol. 1, pp. 1–12, 2015.
    [89] S.-W.Cheng, “Chapter 11 . Comparing two samples,” no. Chapter 11, pp. 1–4, 2012.
    [90] W.Feller, “On the Berry-Esseen theorem,” vol. 10, no. 3, pp. 261–268, 1968, doi: 10.1007/BF00536279.
    [91] J.Uttley, “Power Analysis, Sample Size, and Assessment of Statistical Assumptions—Improving the Evidential Value of Lighting Research,” LEUKOS - J. Illum. Eng. Soc. North Am., vol. 15, no. 2–3, pp. 143–162, 2019.
    [92] B. L.Welch, “The Significance of the Difference Between Two Means when the Population Variances are Unequal,” Biometrika, vol. 29, no. 3/4, p. 350, 1938, doi: 10.2307/2332010.
    [93] S. J.Banga andG. D.Fox, “Bonett ’ s Method,” no. 1981, 2013.
    [94] C. O.Wu andJ. Z.Huang, “Journal of the American Statistical Association: Comment,” J. Am. Stat. Assoc., vol. 98, no. 463, pp. 588–591, 2003, doi: 10.1198/016214503000000486.
    [95] D. G.Bonett, “Robust confidence interval for a ratio of standard deviations,” Appl. Psychol. Meas., vol. 30, no. 5, pp. 432–439, 2006, doi: 10.1177/0146621605279551.
    [96] D. G.Bonett, “Confidence interval for a ratio of variances in bivariate nonnormal distributions,” J. Stat. Comput. Simul., vol. 76, no. 7, pp. 637–644, 2006.
    [97] US Department of Energy, “Determining Electric Motor Load Ranges,” 1997, doi: 10.1109/WAINA.2011.89.

    QR CODE