研究生: |
鄭依柔 Yi-Jou Cheng |
---|---|
論文名稱: |
以RY86-PEGMA-NVP製備抗藍光矽水膠隱形眼鏡之研究 Research on preparation of anti-blue light silicone hydrogel contact lenses using RY86-PEGMA-NVP |
指導教授: |
楊銘乾
Ming-Chien Yang |
口試委員: |
鄭詠馨
劉定宇 |
學位類別: |
碩士 Master |
系所名稱: |
工程學院 - 材料科學與工程系 Department of Materials Science and Engineering |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 71 |
中文關鍵詞: | 矽水膠 、抗藍光 、聚二甲基矽氧烷 、紫外光交聯 |
外文關鍵詞: | PDMS-diol, NVP, PEGMA, Reactive Yellow 86 |
相關次數: | 點閱:721 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以端羥基聚二甲基矽氧烷(Hydroxyl-terminated polydimethylsiloxane,PDMS-diol)作為基材,與異佛爾酮二異氰酸酯(Isophorone diisoctanate, IPDI)以及聚乙二醇甲基丙烯酸酯(polyethylene glycol methacrylate, PEGMA)進行聚合反應,合成大分子單體macromer後,加入N-乙烯基-2-吡咯烷酮(N-Vinylpyrrolidone, NVP)及聚乙二醇甲基丙烯酸酯(polyethylene glycol methacrylate, PEGMA)形成矽水膠共聚物,經由紫外光交聯硬化得到三維網狀結構的矽水膠隱形眼鏡薄膜,使用不同濃度之活性染劑Reactive Yellow 86(RY86)水溶液透過表面染色法將矽水膠樣品染色,使RY86接枝於樣品表面,產生共價鍵。因光的互補色原理,能達到抗藍光的效果,並在研究中探討染劑濃度與阻擋藍光率的關係,當染劑濃度為1%時,在全藍光波段(380nm-500nm)之透光率降低了約62%,表現良好的抗藍光能力,同時也分析市售抗藍光水膠隱形眼鏡的性質加以比較。
本研究探討不同濃度RY86染色形成的矽水膠樣品之物性及生物相容性,結果顯示,RY86-PEGMA-PDMS-PU-NVP之抗藍光矽水膠隱形眼鏡具備傑出的抗藍光性、透氧性及親水性等物理性質,經過生物相容性試驗證實其具有良好的生物相容性及生物細胞無毒性。現今對於3C產品的依賴性與日俱增,人們對於抗藍光隱形眼鏡的需求也將隨之增加,本研究成果在日後隱形眼鏡材料方面的發展具有良好的潛力。
This study developed a new type of anti-blue light silicone hydrogel contact lens. Polydimethylsiloxane (PDMS) was polymerized with isophorone diisoctanate (IPDI) and polyethylene glycol methacrylate (PEGMA) to synthesize a macromer. N-vinylpyrrolidone (NVP) and PEGMA were added to form silicone hydrogel copolymers.
A three-dimensional network structure of silicone hydrogel contact lens membrane was obtained through UV-initiated curing. Reactive Yellow 86 (RY86) aqueous solution of various concentrations was used to dye the silicone hydrogel samples via surface dyeing method, enabling RY86 to be grafted onto the sample surface.
The physical properties and biocompatibility of the resultant silicone hydrogels were investigated. According to the result of UV-Vis spectroscopy, the transmittance in the blue light band (380-500nm) was reduced by about 62% when the concentration of RY86 was 1%, indicating that RY86-PEGMA-PDMS-PU-NVP exhibited anti-blue light activity.
In additional, RY86-PEGMA-PDMS-PU-NVP silicone hydrogel contact lenses possess characteristics included blue light resistance, oxygen permeability, and hydrophilicity. Biocompatibility tests confirmed their biocompatibility and non-toxicity to biological cells. Thus, this research shows promising potential for the future development of contact lens materials.
[1] Moreddu, R., Vigolo, D., & Yetisen, A. K. (2019). Contact lens technology: from fundamentals to applications. Advanced healthcare materials, 8(15), 1900368.
[2] Rykowska, I., Nowak, I., & Nowak, R. (2021). Soft contact lenses as drug delivery systems: a review. Molecules, 26(18), 5577.
[3] Nicolson, P. C., & Vogt, J. (2001). Soft contact lens polymers: an evolution. Biomaterials, 22(24), 3273-3283.
[4] Wichterle, O., & Lim, D. (1960). Hydrophilic gels for biological use. Nature, 185(4706), 117-118.
[5] Rizzi, S. C., & Hubbell, J. A. (2005). Recombinant protein-co-PEG networks as cell-adhesive and proteolytically degradable hydrogel matrixes. Part I: Development and physicochemical characteristics. Biomacromolecules, 6(3), 1226-1238.
[6] Gacesa, P. (1988). Alginates. Carbohydrate polymers, 8(3), 161-182.
[7] Qiu, Y., & Park, K. (2001). Environment-sensitive hydrogels for drug delivery. Advanced drug delivery reviews, 53(3), 321-339.
[8] Peppas, N. A. (Ed.). (1986). Hydrogels in medicine and pharmacy (Vol. 1, pp. 2-6). Boca Raton, FL: CRC press.
[9] Buenger, D., Topuz, F., & Groll, J. (2012). Hydrogels in sensing applications. Progress in Polymer Science, 37(12), 1678-1719.
[10] Chatterjee, S., & Chi-leung HUI, P. (2019). Review of stimuli-responsive polymers in drug delivery and textile application. Molecules, 24(14), 2547.
[11] Loh, X. J., Lee, T. C., & Ito, Y. (2012). Hydrogels for biomedical applications.
Polymeric and Self Assembled Hydrogels: From Fundamental Understanding to
Applications, 8, 167-209.
[12] Lehn, J. M. (1992). Supramolecular Chemistry-Scope and Perspectives Molecules-Supermolecules-Molecular Devices. Nobel Lectures in Chemistry 1981-1990.
[13] Hu, T., Cui, X., Zhu, M., Wu, M., Tian, Y., Yao, B., ... & Fu, X. (2020). 3D-printable supramolecular hydrogels with shear-thinning property: Fabricating strength tunable bioink via dual crosslinking. Bioactive materials, 5(4), 808-818.
[14] Zhang, B., He, J., Shi, M., Liang, Y., & Guo, B. (2020). Injectable self-healing supramolecular hydrogels with conductivity and photo-thermal antibacterial activity
to enhance complete skin regeneration. Chemical Engineering Journal, 400, 125994.
[15] Yan, H., Jiang, Q., Wang, J., Cao, S., Qiu, Y., Wang, H., ... & Xie, X. (2021). A triple-stimuli responsive supramolecular hydrogel based on methoxy-azobenzene-grafted poly (acrylic acid) and β-cyclodextrin dimer. Polymer, 221, 123617.
[16] Mihajlovic, M., Fermin, L., & Ito, K. (2021). CF van Nostrum, T. Vermonden. Multifunct. Mater, 4, 032001.
[17] Heitz, R. F., & Enoch, J. (1987). Leonardo da Vinci: An assessment on his discourses on image formation in the eye. Advances in Diagnostic Visual Optics, 19-26.
[18] Moreddu, R., Vigolo, D., & Yetisen, A. K. (2019). Contact lens technology: from fundamentals to applications. Advanced healthcare materials, 8(15), 1900368.
[19] Pearson, R. M., & Efron, N. (1989). Hundredth anniversary of August Müller's inaugural dissertation on contact lenses. Survey of ophthalmology, 34(2), 133-141.
[20] Chen, D., Chen, F., Hu, X., Zhang, H., Yin, X., & Zhou, Y. (2015). Thermal stability, mechanical and optical properties of novel addition cured PDMS composites with nano-silica sol and MQ silicone resin. Composites Science and Technology, 117, 307-314.
[21] Mi, H. Y., Jing, X., Huang, H. X., & Turng, L. S. (2018). Novel
polydimethylsiloxane (PDMS) composites reinforced with three-dimensional
continuous silica fibers. Materials Letters, 210, 173-176.
[22] Rudy, A., Kuliasha, C., Uruena, J., Rex, J., Schulze, K. D., Stewart, D., ... & Perry, S. S. (2017). Lubricous hydrogel surface coatings on polydimethylsiloxane (PDMS). Tribology Letters, 65, 1-11.
[23] Ghoreishi, S. G., Abbasi, F., & Jalili, K. (2016). Hydrophilicity improvement of silicone rubber by interpenetrating polymer network formation in the proximal layer of polymer surface. Journal of Polymer Research, 23, 1-8.
[24] Zhao, Z. B., An, S. S., Xie, H. J., Han, X. L., Wang, F. H., & Jiang, Y. (2015). The relationship between the hydrophilicity and surface chemical composition
microphase separation structure of multicomponent silicone hydrogels. The Journal of Physical Chemistry B, 119(30), 9780-9786.
[25] Jason J. Nichols. (2024). CONTACT LENSES 2023. CONTACT LENS SPECTRUM, 39(JANUARY/FEBRUARY 2024), 14–16,18,19.
[26] Hynnekleiv, L., Magno, M., Vernhardsdottir, R. R., Moschowits, E., Tønseth, K. A., Dartt, D. A., ... & Utheim, T. P. (2022). Hyaluronic acid in the treatment of dry eye disease. Acta ophthalmologica, 100(8), 844-860.
[27] Nishida, T., Nakamura, M., Mishima, H., & Otori, T. (1991). Hyaluronan stimulates corneal epithelial migration. Experimental eye research, 53(6), 753-758.
[28] Yokoi, N., Komuro, A., Nishida, K., & Kinoshita, S. (1997). Effectiveness of
hyaluronan on corneal epithelial barrier function in dry eye. British journal of
ophthalmology, 81(7), 533-536.
[29] Van Beek, M., Jones, L., & Sheardown, H. (2008). Hyaluronic acid containing hydrogels for the reduction of protein adsorption. Biomaterials, 29(7), 780-789.
[30] Efron, N., Morgan, P. B., Cameron, I. D., Brennan, N. A., & Goodwin, M. (2007). Oxygen permeability and water content of silicone hydrogel contact lens materials. Optometry and Vision Science, 84(4), E328-E337.
[31] Morgan, P. B., Efron, N., Toshida, H., & Nichols, J. J. (2011). An international
analysis of contact lens compliance. Contact Lens and Anterior Eye, 34(5), 223-228.
[32] FATT, I., & WEISSMAN, B. A. (1992). Influence of polarographic cathode diameter on measured oxygen transmissibility of hydrogel contact lenses with optical power. Optometry and vision science, 69(12), 931-935.
[33] Yang, H., Zhao, M., Xing, D., Zhang, J., Fang, T., Zhang, F., ... & Wang, D. (2023). Contact lens as an emerging platform for ophthalmic drug delivery: A systematic review. Asian Journal of Pharmaceutical Sciences, 100847.
[34] Khorasani, M. T., Mirzadeh, H. A. M. I. D., & Kermani, Z. (2005). Wettability of porous polydimethylsiloxane surface: morphology study. Applied Surface Science, 242(3-4), 339-345.
[35] 曾作祥、孫莉(2016) 。界面現象。華東理工大學出版社。
[36] FATT, I. (1984). Prentice Medal lecture: contact lens wettability—myths, mysteries, and realities. Optometry and Vision Science, 61(7), 419-430.
[37] Petrucci RH, Harwood WS & Herring FG. (2002). General chemistry: principles and modern applications (Vol. 1). Prentice Hall.
[38] Sack, R. A., Jones, B., Antignani, A., Libow, R., & Harvey, H. (1987). Specificity and biological activity of the protein deposited on the hydrogel surface. Relationship of polymer structure to biofilm formation. Investigative ophthalmology & visual
science, 28(5), 842-849.
[39] Baines, M. G., Cai, F., & Backman, H. A. (1990). Adsorption and removal of protein bound to hydrogel contact lenses. Optometry and vision science, 67(11), 807-810.
[40] Omali, N. B., Subbaraman, L. N., Coles-Brennan, C., Fadli, Z., & Jones, L. W. (2015). Biological and clinical implications of lysozyme deposition on soft contact lenses. Optometry and Vision Science, 92(7), 750-757.
[41] Lamb, L. E., & Simon, J. D. (2004). A2E: A Component of Ocular Lipofuscin¶. Photochemistry and photobiology, 79(2), 127-136.
[42] Xie, C., Li, X., Tong, J., Gu, Y., & Shen, Y. (2014). Effects of white light‐emitting diode (LED) light exposure with different Correlated Color Temperatures (CCT s) on human lens epithelial cells in culture. Photochemistry and Photobiology, 90(4), 853-859.
[43] Babizhayev, M. A. (2011). Mitochondria induce oxidative stress, generation of reactive oxygen species and redox state unbalance of the eye lens leading to human cataract formation: disruption of redox lens organization by phospholipid
hydroperoxides as a common basis for cataract disease. Cell Biochemistry and
Function, 29(3), 183-206.
[44] Li, J. Y., Zhang, K., Xu, D., Zhou, W. T., Fang, W. Q., Wan, Y. Y., ... & Han, X. J. (2018). Mitochondrial fission is required for blue light-induced apoptosis and
mitophagy in retinal neuronal R28 cells. Frontiers in Molecular Neuroscience, 11,
432.
[45] Zhao, Z. C., Zhou, Y., Tan, G., & Li, J. (2018). Research progress about the effect and prevention of blue light on eyes. International journal of ophthalmology, 11(12), 1999.
[46] Lai, C. F., Li, J. S., Fang, Y. T., Chien, C. J., & Lee, C. H. (2018). UV and blue-light anti-reflective structurally colored contact lenses based on a copolymer hydrogel with amorphous array nanostructures. RSC advances, 8(8), 4006-4013.
[47] Alger, M. (1996). Polymer science dictionary. Springer Science & Business Media.
[48] Fouassier, J. P., & Lalevée, J. (2012). Photoinitiators for polymer synthesis: scope, reactivity, and efficiency. John Wiley & Sons.
[49] Czech, Z., Kowalczyk, A., Kabatc, J., Shao, L., Bai, Y., & Świderska, J. (2013). UV-initiated crosslinking of photoreactive acrylic pressure-sensitive adhesives using excimer-laser. Polymer Bulletin, 70, 479-488.
[50] Bednarczyk, P., Mozelewska, K., & Czech, Z. (2020). Influence of the UV crosslinking method on the properties of acrylic adhesive. International Journal of Adhesion and Adhesives, 102, 102652.
[51] Wolf, M. P., Salieb-Beugelaar, G. B., & Hunziker, P. (2018). PDMS with designer functionalities—Properties, modifications strategies, and applications. Progress in Polymer Science, 83, 97-134.
[52] de Aguiar, K. M. R., Nascimento, M. V., Faccioni, J. L., Noeske, P. L. M., Gaetjen, L., Rischka, K., & Rodrigues-Filho, U. P. (2019). Urethanes PDMS-based:
Functional hybrid coatings for metallic dental implants. Applied Surface Science, 484, 1128-1140.
[53] Ha, B. H., Destgeer, G., Park, J., Jung, J. H., & Sung, H. J. (2015). Generation of complex, dynamic temperature gradients in a disposable microchip. Physics
Procedia, 70, 38-41.
[54] Maldonado-Codina, C., & Efron, N. (2003). Hydrogel lenses-materials and
manufacture. Optometry in Practice, 4, 101-113.
[55] PARAMBIL, A., PUTTAIAHGOWDA, Y., & Shankarappa, P. (2012).
Copolymerization of N-Vinyl pyrrolidone with methyl methacrylate by Ti (III)-DMG redox initiator. Turkish Journal of Chemistry, 36(3), 397-409.
[56] Lai, Y. C., & Valint Jr, P. L. (1996). Control of properties in silicone hydrogels by using a pair of hydrophilic monomers. Journal of applied polymer science, 61(12), 2051-2058.
[57] Lin, C. H., Yeh, Y. H., Lin, W. C., & Yang, M. C. (2014). Novel silicone hydrogel based on PDMS and PEGMA for contact lens application. Colloids and Surfaces B: Biointerfaces, 123, 986-994.
[58] Venault, A., Liu, Y. H., Wu, J. R., Yang, H. S., Chang, Y., Lai, J. Y., & Aimar, P. (2014). Low-biofouling membranes prepared by liquid-induced phase separation of the PVDF/polystyrene-b-poly (ethylene glycol) methacrylate blend. Journal of
Membrane Science, 450, 340-350.
[59] Joseph W. Wittmann, John M. Evans. (1990). United States Patent No. 4,891,046. Washington, DC: U.S. Patent and Trademark Office.
[60] Miranda, M.A., Ghosh, A., Mahmodi, G.; Xie, S., Shaw, M.; Kim, S., Krzmarzick, M.J., Lampert, D.J., & Aichele, C.P. (2022). Treatment and recovery of high-value elements from produced water. Water, 14(6), 880.