簡易檢索 / 詳目顯示

研究生: 鄭依柔
Yi-Jou Cheng
論文名稱: 以RY86-PEGMA-NVP製備抗藍光矽水膠隱形眼鏡之研究
Research on preparation of anti-blue light silicone hydrogel contact lenses using RY86-PEGMA-NVP
指導教授: 楊銘乾
Ming-Chien Yang
口試委員: 鄭詠馨
劉定宇
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 71
中文關鍵詞: 矽水膠抗藍光聚二甲基矽氧烷紫外光交聯
外文關鍵詞: PDMS-diol, NVP, PEGMA, Reactive Yellow 86
相關次數: 點閱:141下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以端羥基聚二甲基矽氧烷(Hydroxyl-terminated polydimethylsiloxane,PDMS-diol)作為基材,與異佛爾酮二異氰酸酯(Isophorone diisoctanate, IPDI)以及聚乙二醇甲基丙烯酸酯(polyethylene glycol methacrylate, PEGMA)進行聚合反應,合成大分子單體macromer後,加入N-乙烯基-2-吡咯烷酮(N-Vinylpyrrolidone, NVP)及聚乙二醇甲基丙烯酸酯(polyethylene glycol methacrylate, PEGMA)形成矽水膠共聚物,經由紫外光交聯硬化得到三維網狀結構的矽水膠隱形眼鏡薄膜,使用不同濃度之活性染劑Reactive Yellow 86(RY86)水溶液透過表面染色法將矽水膠樣品染色,使RY86接枝於樣品表面,產生共價鍵。因光的互補色原理,能達到抗藍光的效果,並在研究中探討染劑濃度與阻擋藍光率的關係,當染劑濃度為1%時,在全藍光波段(380nm-500nm)之透光率降低了約62%,表現良好的抗藍光能力,同時也分析市售抗藍光水膠隱形眼鏡的性質加以比較。
    本研究探討不同濃度RY86染色形成的矽水膠樣品之物性及生物相容性,結果顯示,RY86-PEGMA-PDMS-PU-NVP之抗藍光矽水膠隱形眼鏡具備傑出的抗藍光性、透氧性及親水性等物理性質,經過生物相容性試驗證實其具有良好的生物相容性及生物細胞無毒性。現今對於3C產品的依賴性與日俱增,人們對於抗藍光隱形眼鏡的需求也將隨之增加,本研究成果在日後隱形眼鏡材料方面的發展具有良好的潛力。


    This study developed a new type of anti-blue light silicone hydrogel contact lens. Polydimethylsiloxane (PDMS) was polymerized with isophorone diisoctanate (IPDI) and polyethylene glycol methacrylate (PEGMA) to synthesize a macromer. N-vinylpyrrolidone (NVP) and PEGMA were added to form silicone hydrogel copolymers.
    A three-dimensional network structure of silicone hydrogel contact lens membrane was obtained through UV-initiated curing. Reactive Yellow 86 (RY86) aqueous solution of various concentrations was used to dye the silicone hydrogel samples via surface dyeing method, enabling RY86 to be grafted onto the sample surface.
    The physical properties and biocompatibility of the resultant silicone hydrogels were investigated. According to the result of UV-Vis spectroscopy, the transmittance in the blue light band (380-500nm) was reduced by about 62% when the concentration of RY86 was 1%, indicating that RY86-PEGMA-PDMS-PU-NVP exhibited anti-blue light activity.
    In additional, RY86-PEGMA-PDMS-PU-NVP silicone hydrogel contact lenses possess characteristics included blue light resistance, oxygen permeability, and hydrophilicity. Biocompatibility tests confirmed their biocompatibility and non-toxicity to biological cells. Thus, this research shows promising potential for the future development of contact lens materials.

    摘要 ............................. I Abstract ....................... II 誌謝 .......................... III 目錄 .......................... IV 圖索引 ..................... VII 表索引 ..................... VII 1.1 研究背景 ............. 1 1.2 研究目的 ............. 2 2.1 水膠的介紹 ......... 3 2.2 水膠的合成與分類 ............................... 3 2.2.1 化學性水膠 ...... 4 2.2.2 物理性水膠 ...... 5 2.3 智慧型水膠 ......... 6 2.3.1 溫度敏感性水膠 ................................ 6 2.3.2 酸鹼敏感性水膠 ................................ 7 2.3.3 超分子水膠(Supramolecular Hydrogel) ......................... 8 2.4 隱形眼鏡的介紹 . 9 2.5 硬式隱形眼鏡 ... 10 2.5.1 聚甲基丙烯酸甲酯(Poly(methyl methacrylate),簡稱PMMA) .................... 11 2.5.2 矽氧烷甲基丙烯酸酯(Siloxanyl methacrylate,SMA) ..... 11 2.6 軟式隱形眼鏡 .... 11 2.6.1 水膠隱形眼鏡 (Hydrogel contact lenses) ......................... 12 2.6.2 矽水膠隱形眼鏡(Silicone Hydrogel contact lenses) ......... 12 2.7 透明質酸對隱形眼鏡的影響 ............. 13 2.8 隱形眼鏡的特殊性質 ......................... 14 2.8.1 含水量 ............ 14 2.8.2 透氧率 ............ 15 2.8.3 光學透明度 .... 16 2.8.4 表面潤濕性 .... 16 2.8.5 蛋白質吸附 .... 17 2.9 角膜塑型隱形眼鏡 ............................. 17 2.10 多焦點隱形眼鏡 ............................... 18 2.11 抗藍光隱形眼鏡 ............................... 18 2.11.1 吸收式 .......... 19 2.11.2 反射式 .......... 20 2.12 紫外光硬化交聯 ............................... 20 2.13 PDMS ............... 22 2.14 IPDI .................. 23 2.15 NVP .................. 24 2.16 PEGMA ............ 25 2.17 RY86 ................. 26 3.1 實驗材料 ........... 27 3.2 實驗設備 ........... 28 3.3 實驗流程圖 ....... 29 3.4 實驗原理與方法 ................................. 30 3.4.1 實驗原理 ........ 30 3.4.2 實驗方法 ........ 31 3.4.3 配方表 ............ 32 3.5 物性分析 ........... 33 3.5.1 傅立葉紅外線光譜分析(Fourier transform infrared spectroscopy, FT-IR) ........ 33 3.5.2 Reactive yellow 86接枝量 ................ 34 3.5.3 可見光透光率測定(Transmittance) . 35 3.5.4 平衡含水量測定(Equilibrium water content) .................... 36 3.5.5 透氧係數測定(Oxygen permeability) ................................ 37 3.5.6 界達電位 (zeta potential) ................ 38 3.5.7 拉伸試驗 (Tensile test) ................... 39 3.5.8 接觸角測試 (Contact angle measurement) ....................... 40 3.6 生物相容性試驗 (Biocompatibility) .. 41 3.6.1 蛋白質吸附 (Protein adsorption) .... 41 3.6.2 細胞培養 (Cell culture) ................... 43 3.6.3 細胞存活率分析 (MTT Assay) ....... 44 3.6.4 細胞毒性試驗 (In-vitro cytotoxicity) ............................... 46 4.1 傅立葉紅外線光譜測定 ..................... 48 4.2 Reactive Yellow 86接枝量 ................... 49 4.3 可見光透光率測定 ............................. 50 4.4 平衡含水量測定 ................................. 53 4.5 透氧係數測定 ... 54 4.6 界達電位測定 ... 56 4.7 拉伸試驗 ........... 58 4.8 接觸角測試 ....... 59 4.9 蛋白質吸附 ....... 61 4.10 細胞相容性 ..... 62 第伍章 結論 ............ 67 參考文獻 .................. 68

    [1] Moreddu, R., Vigolo, D., & Yetisen, A. K. (2019). Contact lens technology: from fundamentals to applications. Advanced healthcare materials, 8(15), 1900368.
    [2] Rykowska, I., Nowak, I., & Nowak, R. (2021). Soft contact lenses as drug delivery systems: a review. Molecules, 26(18), 5577.
    [3] Nicolson, P. C., & Vogt, J. (2001). Soft contact lens polymers: an evolution. Biomaterials, 22(24), 3273-3283.
    [4] Wichterle, O., & Lim, D. (1960). Hydrophilic gels for biological use. Nature, 185(4706), 117-118.
    [5] Rizzi, S. C., & Hubbell, J. A. (2005). Recombinant protein-co-PEG networks as cell-adhesive and proteolytically degradable hydrogel matrixes. Part I: Development and physicochemical characteristics. Biomacromolecules, 6(3), 1226-1238.
    [6] Gacesa, P. (1988). Alginates. Carbohydrate polymers, 8(3), 161-182.
    [7] Qiu, Y., & Park, K. (2001). Environment-sensitive hydrogels for drug delivery. Advanced drug delivery reviews, 53(3), 321-339.
    [8] Peppas, N. A. (Ed.). (1986). Hydrogels in medicine and pharmacy (Vol. 1, pp. 2-6). Boca Raton, FL: CRC press.
    [9] Buenger, D., Topuz, F., & Groll, J. (2012). Hydrogels in sensing applications. Progress in Polymer Science, 37(12), 1678-1719.
    [10] Chatterjee, S., & Chi-leung HUI, P. (2019). Review of stimuli-responsive polymers in drug delivery and textile application. Molecules, 24(14), 2547.
    [11] Loh, X. J., Lee, T. C., & Ito, Y. (2012). Hydrogels for biomedical applications.
    Polymeric and Self Assembled Hydrogels: From Fundamental Understanding to
    Applications, 8, 167-209.
    [12] Lehn, J. M. (1992). Supramolecular Chemistry-Scope and Perspectives Molecules-Supermolecules-Molecular Devices. Nobel Lectures in Chemistry 1981-1990.
    [13] Hu, T., Cui, X., Zhu, M., Wu, M., Tian, Y., Yao, B., ... & Fu, X. (2020). 3D-printable supramolecular hydrogels with shear-thinning property: Fabricating strength tunable bioink via dual crosslinking. Bioactive materials, 5(4), 808-818.
    [14] Zhang, B., He, J., Shi, M., Liang, Y., & Guo, B. (2020). Injectable self-healing supramolecular hydrogels with conductivity and photo-thermal antibacterial activity
    to enhance complete skin regeneration. Chemical Engineering Journal, 400, 125994.
    [15] Yan, H., Jiang, Q., Wang, J., Cao, S., Qiu, Y., Wang, H., ... & Xie, X. (2021). A triple-stimuli responsive supramolecular hydrogel based on methoxy-azobenzene-grafted poly (acrylic acid) and β-cyclodextrin dimer. Polymer, 221, 123617.
    [16] Mihajlovic, M., Fermin, L., & Ito, K. (2021). CF van Nostrum, T. Vermonden. Multifunct. Mater, 4, 032001.
    [17] Heitz, R. F., & Enoch, J. (1987). Leonardo da Vinci: An assessment on his discourses on image formation in the eye. Advances in Diagnostic Visual Optics, 19-26.
    [18] Moreddu, R., Vigolo, D., & Yetisen, A. K. (2019). Contact lens technology: from fundamentals to applications. Advanced healthcare materials, 8(15), 1900368.
    [19] Pearson, R. M., & Efron, N. (1989). Hundredth anniversary of August Müller's inaugural dissertation on contact lenses. Survey of ophthalmology, 34(2), 133-141.
    [20] Chen, D., Chen, F., Hu, X., Zhang, H., Yin, X., & Zhou, Y. (2015). Thermal stability, mechanical and optical properties of novel addition cured PDMS composites with nano-silica sol and MQ silicone resin. Composites Science and Technology, 117, 307-314.
    [21] Mi, H. Y., Jing, X., Huang, H. X., & Turng, L. S. (2018). Novel
    polydimethylsiloxane (PDMS) composites reinforced with three-dimensional
    continuous silica fibers. Materials Letters, 210, 173-176.
    [22] Rudy, A., Kuliasha, C., Uruena, J., Rex, J., Schulze, K. D., Stewart, D., ... & Perry, S. S. (2017). Lubricous hydrogel surface coatings on polydimethylsiloxane (PDMS). Tribology Letters, 65, 1-11.
    [23] Ghoreishi, S. G., Abbasi, F., & Jalili, K. (2016). Hydrophilicity improvement of silicone rubber by interpenetrating polymer network formation in the proximal layer of polymer surface. Journal of Polymer Research, 23, 1-8.
    [24] Zhao, Z. B., An, S. S., Xie, H. J., Han, X. L., Wang, F. H., & Jiang, Y. (2015). The relationship between the hydrophilicity and surface chemical composition
    microphase separation structure of multicomponent silicone hydrogels. The Journal of Physical Chemistry B, 119(30), 9780-9786.
    [25] Jason J. Nichols. (2024). CONTACT LENSES 2023. CONTACT LENS SPECTRUM, 39(JANUARY/FEBRUARY 2024), 14–16,18,19.
    [26] Hynnekleiv, L., Magno, M., Vernhardsdottir, R. R., Moschowits, E., Tønseth, K. A., Dartt, D. A., ... & Utheim, T. P. (2022). Hyaluronic acid in the treatment of dry eye disease. Acta ophthalmologica, 100(8), 844-860.
    [27] Nishida, T., Nakamura, M., Mishima, H., & Otori, T. (1991). Hyaluronan stimulates corneal epithelial migration. Experimental eye research, 53(6), 753-758.
    [28] Yokoi, N., Komuro, A., Nishida, K., & Kinoshita, S. (1997). Effectiveness of
    hyaluronan on corneal epithelial barrier function in dry eye. British journal of
    ophthalmology, 81(7), 533-536.
    [29] Van Beek, M., Jones, L., & Sheardown, H. (2008). Hyaluronic acid containing hydrogels for the reduction of protein adsorption. Biomaterials, 29(7), 780-789.
    [30] Efron, N., Morgan, P. B., Cameron, I. D., Brennan, N. A., & Goodwin, M. (2007). Oxygen permeability and water content of silicone hydrogel contact lens materials. Optometry and Vision Science, 84(4), E328-E337.
    [31] Morgan, P. B., Efron, N., Toshida, H., & Nichols, J. J. (2011). An international
    analysis of contact lens compliance. Contact Lens and Anterior Eye, 34(5), 223-228.
    [32] FATT, I., & WEISSMAN, B. A. (1992). Influence of polarographic cathode diameter on measured oxygen transmissibility of hydrogel contact lenses with optical power. Optometry and vision science, 69(12), 931-935.
    [33] Yang, H., Zhao, M., Xing, D., Zhang, J., Fang, T., Zhang, F., ... & Wang, D. (2023). Contact lens as an emerging platform for ophthalmic drug delivery: A systematic review. Asian Journal of Pharmaceutical Sciences, 100847.
    [34] Khorasani, M. T., Mirzadeh, H. A. M. I. D., & Kermani, Z. (2005). Wettability of porous polydimethylsiloxane surface: morphology study. Applied Surface Science, 242(3-4), 339-345.
    [35] 曾作祥、孫莉(2016) 。界面現象。華東理工大學出版社。
    [36] FATT, I. (1984). Prentice Medal lecture: contact lens wettability—myths, mysteries, and realities. Optometry and Vision Science, 61(7), 419-430.
    [37] Petrucci RH, Harwood WS & Herring FG. (2002). General chemistry: principles and modern applications (Vol. 1). Prentice Hall.
    [38] Sack, R. A., Jones, B., Antignani, A., Libow, R., & Harvey, H. (1987). Specificity and biological activity of the protein deposited on the hydrogel surface. Relationship of polymer structure to biofilm formation. Investigative ophthalmology & visual
    science, 28(5), 842-849.
    [39] Baines, M. G., Cai, F., & Backman, H. A. (1990). Adsorption and removal of protein bound to hydrogel contact lenses. Optometry and vision science, 67(11), 807-810.
    [40] Omali, N. B., Subbaraman, L. N., Coles-Brennan, C., Fadli, Z., & Jones, L. W. (2015). Biological and clinical implications of lysozyme deposition on soft contact lenses. Optometry and Vision Science, 92(7), 750-757.
    [41] Lamb, L. E., & Simon, J. D. (2004). A2E: A Component of Ocular Lipofuscin¶. Photochemistry and photobiology, 79(2), 127-136.
    [42] Xie, C., Li, X., Tong, J., Gu, Y., & Shen, Y. (2014). Effects of white light‐emitting diode (LED) light exposure with different Correlated Color Temperatures (CCT s) on human lens epithelial cells in culture. Photochemistry and Photobiology, 90(4), 853-859.
    [43] Babizhayev, M. A. (2011). Mitochondria induce oxidative stress, generation of reactive oxygen species and redox state unbalance of the eye lens leading to human cataract formation: disruption of redox lens organization by phospholipid
    hydroperoxides as a common basis for cataract disease. Cell Biochemistry and
    Function, 29(3), 183-206.
    [44] Li, J. Y., Zhang, K., Xu, D., Zhou, W. T., Fang, W. Q., Wan, Y. Y., ... & Han, X. J. (2018). Mitochondrial fission is required for blue light-induced apoptosis and
    mitophagy in retinal neuronal R28 cells. Frontiers in Molecular Neuroscience, 11,
    432.
    [45] Zhao, Z. C., Zhou, Y., Tan, G., & Li, J. (2018). Research progress about the effect and prevention of blue light on eyes. International journal of ophthalmology, 11(12), 1999.
    [46] Lai, C. F., Li, J. S., Fang, Y. T., Chien, C. J., & Lee, C. H. (2018). UV and blue-light anti-reflective structurally colored contact lenses based on a copolymer hydrogel with amorphous array nanostructures. RSC advances, 8(8), 4006-4013.
    [47] Alger, M. (1996). Polymer science dictionary. Springer Science & Business Media.
    [48] Fouassier, J. P., & Lalevée, J. (2012). Photoinitiators for polymer synthesis: scope, reactivity, and efficiency. John Wiley & Sons.
    [49] Czech, Z., Kowalczyk, A., Kabatc, J., Shao, L., Bai, Y., & Świderska, J. (2013). UV-initiated crosslinking of photoreactive acrylic pressure-sensitive adhesives using excimer-laser. Polymer Bulletin, 70, 479-488.
    [50] Bednarczyk, P., Mozelewska, K., & Czech, Z. (2020). Influence of the UV crosslinking method on the properties of acrylic adhesive. International Journal of Adhesion and Adhesives, 102, 102652.
    [51] Wolf, M. P., Salieb-Beugelaar, G. B., & Hunziker, P. (2018). PDMS with designer functionalities—Properties, modifications strategies, and applications. Progress in Polymer Science, 83, 97-134.
    [52] de Aguiar, K. M. R., Nascimento, M. V., Faccioni, J. L., Noeske, P. L. M., Gaetjen, L., Rischka, K., & Rodrigues-Filho, U. P. (2019). Urethanes PDMS-based:
    Functional hybrid coatings for metallic dental implants. Applied Surface Science, 484, 1128-1140.
    [53] Ha, B. H., Destgeer, G., Park, J., Jung, J. H., & Sung, H. J. (2015). Generation of complex, dynamic temperature gradients in a disposable microchip. Physics
    Procedia, 70, 38-41.
    [54] Maldonado-Codina, C., & Efron, N. (2003). Hydrogel lenses-materials and
    manufacture. Optometry in Practice, 4, 101-113.
    [55] PARAMBIL, A., PUTTAIAHGOWDA, Y., & Shankarappa, P. (2012).
    Copolymerization of N-Vinyl pyrrolidone with methyl methacrylate by Ti (III)-DMG redox initiator. Turkish Journal of Chemistry, 36(3), 397-409.
    [56] Lai, Y. C., & Valint Jr, P. L. (1996). Control of properties in silicone hydrogels by using a pair of hydrophilic monomers. Journal of applied polymer science, 61(12), 2051-2058.
    [57] Lin, C. H., Yeh, Y. H., Lin, W. C., & Yang, M. C. (2014). Novel silicone hydrogel based on PDMS and PEGMA for contact lens application. Colloids and Surfaces B: Biointerfaces, 123, 986-994.
    [58] Venault, A., Liu, Y. H., Wu, J. R., Yang, H. S., Chang, Y., Lai, J. Y., & Aimar, P. (2014). Low-biofouling membranes prepared by liquid-induced phase separation of the PVDF/polystyrene-b-poly (ethylene glycol) methacrylate blend. Journal of
    Membrane Science, 450, 340-350.
    [59] Joseph W. Wittmann, John M. Evans. (1990). United States Patent No. 4,891,046. Washington, DC: U.S. Patent and Trademark Office.
    [60] Miranda, M.A., Ghosh, A., Mahmodi, G.; Xie, S., Shaw, M.; Kim, S., Krzmarzick, M.J., Lampert, D.J., & Aichele, C.P. (2022). Treatment and recovery of high-value elements from produced water. Water, 14(6), 880.

    無法下載圖示
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE