研究生: |
劉達融 Ta-Jung Liu |
---|---|
論文名稱: |
異質環境中考慮鄰近資源可用性之容錯卸載設計及分析 Design and Analysis of Offloading with Fault Tolerance Considering Nearby Resource Availability in Heterogeneous Environments |
指導教授: |
馮輝文
Huei-Wen Ferng |
口試委員: |
馮輝文
Huei-Wen Ferng 陳錫明 Shyi-Ming Chen 魏宏宇 Hung-Yu Wei 曾志成 Chih-Cheng Tseng 蔡明忠 Ming-Jong Tsai |
學位類別: |
碩士 Master |
系所名稱: |
電資學院 - 資訊工程系 Department of Computer Science and Information Engineering |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 103 |
中文關鍵詞: | 行動雲端運算 、多接取邊緣運算 、車輛霧端運算 、工作卸載 、容錯設計 、異質環境 |
外文關鍵詞: | Mobile Cloud Computing, Multi-access Edge Computing, Vehicular Fog Computing, Task Offloading, Fault-tolerant Design, Heterogeneous Environment |
相關次數: | 點閱:651 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著物聯網和移動設備的快速發展,許多設備的計算能力和電池壽命成為了限制其性能的主要瓶頸,工作卸載 (Task Offloading) 被認為是一種能有效解決這些問題的方法,旨在提升智慧運輸系統及其他應用中的效能和可靠性。本碩士論文考慮了異質環境 (Heterogeneous Environment),且伺服器會有故障的情況,基於 [1] 的卸載架構,在雲端 (Cloud)、邊緣 (Edge) 與車輛霧 (Vehicular Fog) 之外,添加了鄰近裝置 (Surrounding Equipment),將使用者裝置 (User Equipment) 較相近的運算資源納入架構中,本研究提出了三種容錯卸載設計,在每種模式下根據這些鄰近資源的可用性,依照關聯向量 (Association Vector) 的不同,將可能出現之子情境納入,並在含有故障的情境下分別設計對應的處理策略,可在整體範圍中分配出不同的裝置數量,也提出最佳化問題來找尋最佳卸載機率。本論文分析了每個子情境下的故障處理策略,並透過模擬驗證這些策略的表現,比較不同資源狀態下的服務品質違反機率和平均工作延遲,來探討系統如何能在複雜的情境下維持一定效能,最後從實驗結果中可觀察到更多的系統動態 (System Dynamics),因此與先前研究相比,本論文之卸載設計更適合應用於實際的網路情景。
With the rapid development of the Internet of Things (IoT) and mobile devices, the computing power and battery life of many devices have become major bottlenecks that limit their performance. Task offloading is considered an effective method to address these issues, aiming to improve the efficiency and reliability of intelligent transportation systems and other applications. This thesis considers a heterogeneous environment in which servers may fail, and based on the offloading framework from [1], it incorporates surrounding equipment into the architecture, alongside the cloud, edge, and vehicular fog, to include computing resources that are closer to the user equipment. This research proposes three fault-tolerant offloading designs. In each model, depending on the availability of these surrounding resources and the different association vectors, potential sub-scenarios are considered, and corresponding handling strategies are designed for scenarios that involve failures. The design allows for the allocation of different numbers of devices across the entire scope, and an optimization problem is proposed to find the optimal offloading probability. This thesis analyzes the fault-handling strategies under each sub-scenario and validates the performance of these strategies through simulations. By comparing the quality of service violation probability and average task delay under different resource conditions, the study explores how the system can maintain a certain level of performance in complex situations. Finally, from the experimental results, more system dynamics can be observed, making the offloading design in this thesis more suitable for practical network scenarios compared to previous research.
[1] T.-Y. Hsieh, Incorporation of multi-server failures into the offloading of a 4-tier federated architecture: Fault tolerance design, analysis, optimization, and system dynamics exploration, National Taiwan University of Science and Technology, M.S. Thesis, 2022.
[2] M. A. Jamshed, K. Ali, Q. H. Abbasi, M. A. Imran, and M. Ur-Rehman, “Challenges, applications, and future of wireless sensors in internet of things: A review,” IEEE Sensors Journal, vol. 22, no. 6, pp. 5482–5494, 2022.
[3] A. u. R. Khan, M. Othman, S. A. Madani, and S. U. Khan, “A survey of mobile cloud computing application models,” IEEE Communications Surveys & Tutorials, vol. 16, no. 1, pp. 393–413, 2014.
[4] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge computing: A survey,” IEEE Internet of Things Journal, vol. 5, no. 1, pp. 450–465, 2018.
[5] X. Chen, “Decentralized computation offloading game for mobile cloud computing,” IEEE Transactions on Parallel and Distributed Systems, vol. 26, no. 4, pp. 974–983, 2015.
[6] Z. Sanaei, S. Abolfazli, A. Gani, and R. Buyya, “Heterogeneity in mobile cloud computing: Taxonomy and open challenges,” IEEE Communications Surveys & Tutorials, vol. 16, no. 1, pp. 369–392, 2014.
[7] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on mobile edge computing: The communication perspective,” IEEE Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2322–2358, 2017.
[8] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On multi-access edge computing: A survey of the emerging 5g network edge cloud architecture and orchestration,” IEEE Communications Surveys & Tutorials, vol. 19, no. 3, pp. 1657–1681, 2017.
[9] G. Goel and A. K. Chaturvedi, “A systematic review of task offloading & load balancing methods in a fog computing environment: Major highlights & research areas,” in Proc. International Conference on Intelligent Communication and Computational Techniques (ICCT), Jan. 2023, pp. 1–5.
[10] W. Duan, J. Gu, M. Wen, G. Zhang, Y. Ji, and S. Mumtaz, “Emerging technologies for 5g-iov networks: Applications, trends and opportunities,” IEEE Network, vol. 34, no. 5, pp. 283–289, 2020.
[11] Z. Wei, B. Li, R. Zhang, X. Cheng, and L. Yang, “Tbomc: A task-block-based overlapping matching-coalition scheme for task offloading in vehicular fog computing,” IEEE Internet of Things Journal, vol. 10, no. 17, pp. 15 209–15 222, 2023.
[12] D. Xu, Y. Li, X. Chen, et al., “A survey of opportunistic offloading,” IEEE Communications Surveys & Tutorials, vol. 20, no. 3, pp. 2198–2236, 2018.
[13] A. B. De Souza, P. A. L. Rego, T. Carneiro, et al., “Computation offloading for vehicular environments: A survey,” IEEE Access, vol. 8, pp. 198 214–198 243, 2020.
[14] A. Rudenko, P. Reiher, G. J. Popek, and G. H. Kuenning, “Saving portable computer battery power through remote process execution,” SIGMOBILE Mob. Comput. Commun. Rev., vol. 2, no. 1, pp. 19–26, 1998, issn: 1559-1662.
[15] P. Gupta, R. Sharma, and S. Gupta, “A review on task offloading mechanism for iot edge fog cloud data interplay,” in Proc. IEEE Delhi Section Conference (DELCON), Feb. 2022, pp. 1–10.
[16] Y.-T. Chiang, Offloading in the cloud, edge, and ue federated system with consideration of edge server failure: Design, analysis, and optimization, National Taiwan University of Science and Technology, M.S. Thesis, 2021.
[17] C.-W. Shen, Offloading along with fault tolerance design in the v2x-based federated system with multiple failures: Architecture, optimization, and analysis, National Taiwan University of Science and Technology, M.S. Thesis, 2023.
[18] A. Waheed, M. A. Shah, S. M. Mohsin, et al., “A comprehensive review of computing paradigms, enabling computation offloading and task execution in vehicular networks,” IEEE Access, vol. 10, pp. 3580–3600, 2022.
[19] C. Ren, G. Zhang, X. Gu, and Y. Li, “Computing offloading in vehicular edge computing networks: Full or partial offloading?” In Proc. IEEE Information Technology and Mechatronics Engineering Conference (ITOEC), vol. 6, Mar. 2022, pp. 693–698.
[20] Z. Ning, P. Dong, X. Wang, et al., “Partial computation offloading and adaptive task scheduling for 5g-enabled vehicular networks,” IEEE Transactions on Mobile Computing, vol. 21, no. 4, pp. 1319–1333, 2022.
[21] H. Ko and Y. Kyung, “Performance analysis and optimization of delayed offloading system with opportunistic fog node,” IEEE Transactions on Vehicular Technology, vol. 71, no. 9, pp. 10 203–10 208, 2022.
[22] L.-H. Yen, J.-C. Hu, Y.-D. Lin, and B. Kar, “Decentralized configuration protocols for low-cost offloading from multiple edges to multiple vehicular fogs,” IEEE Transactions on Vehicular Technology, vol. 70, no. 1, pp. 872–885, 2021.
[23] Z. Liu, P. Dai, H. Xing, Z. Yu, and W. Zhang, “A distributed algorithm for task offloading in vehicular networks with hybrid fog/cloud computing,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 52, no. 7, pp. 4388–4401, 2022.
[24] I. Sarkar, M. Adhikari, N. Kumar, and S. Kumar, “Dynamic task placement for deadline-aware iot applications in federated fog networks,” IEEE Internet of Things Journal, vol. 9, no. 2, pp. 1469–1478, 2022.
[25] T. Long, Y. Ma, Y. Xia, X. Xiao, Q. Peng, and J. Zhao, “A mobility-aware and fault-tolerant service offloading method in mobile edge computing,” in Proc. IEEE International Conference on Web Services (ICWS), Jul. 2022, pp. 67–72.
[26] M. Chen, S. Guo, K. Liu, X. Liao, and B. Xiao, “Robust computation offloading and resource scheduling in cloudlet-based mobile cloud computing,” IEEE Transactions on Mobile Computing, vol. 20, no. 5, pp. 2025–2040, 2021.
[27] A. van Moorsel and K. Wolter, “Analysis of restart mechanisms in software systems,” IEEE Transactions on Software Engineering, vol. 32, no. 8, pp. 547–558, 2006.
[28] R.-H. Hwang, Y.-C. Lai, and Y.-D. Lin, “Offloading optimization with delay constraint in the 3-tier federated cloud, edge, and fog systems,” in Proc. IEEE Global Communications Conference (GLOBECOM), Dec. 2021, pp. 1–6.
[29] B. Kar, K.-M. Shieh, Y.-C. Lai, Y.-D. Lin, and H.-W. Ferng, “Qos violation probability minimization in federating vehicular-fogs with cloud and edge systems,” IEEE Transactions on Vehicular Technology, vol. 70, no. 12, pp. 13 270–13 280, 2021.
[30] L. A. Haibeh, M. C. E. Yagoub, and A. Jarray, “A survey on mobile edge computing infrastructure: Design, resource management, and optimization approaches,” IEEE Access, vol. 10, pp. 27 591–27 610, 2022.
[31] M.ETSI, “Multi-access edge computing (mec); framework and reference architecture,” vol. 3, 2024.
[32] F. G. Wakgra, W. Yahya, B. Kar, Y.-C. Lai, Y.-D. Lin, and S. B. Tadele, “Ratio-based offloading optimization for edge and vehicular-fog federated systems: A multi-agent td3 approach,” IEEE Transactions on Vehicular Technology, pp. 1–13, 2024.
[33] F. Conceição, N. Oualha, and D. Zeghlache, “Real-time dynamic security for prose in 5g,” in Proc. International Conference on Signal Processing and Information Security (ICSPIS), Nov. 2019, pp. 1–4.
[34] H.-W. Ferng and Y.-C. Tsai, “Using priority, buffering, threshold control, and reservation techniques to improve channel-allocation schemes for the gprs system,” IEEE Transactions on Vehicular Technology, vol. 54, no. 1, pp. 286–306, 2005.
[35] C. M. H. John F. Shortle Donald Gross, Fundamentals of Queueing Theory, 4th Edition. Wiley, 2008.