簡易檢索 / 詳目顯示

研究生: 陳相如
Hsiang-Ju Chen
論文名稱: 微型化微波電路研製—使用並聯段枝為基礎之人工傳輸線
Development of Miniaturized Microwave Circuit Using Shunt-Stub-Based Artificial Transmission Lines
指導教授: 曾昭雄
Chao-Hsiung Tseng
口試委員: 陳士元
Shih-Yuan Chen
馬自莊
Tzyh-Ghuang Ma
王蒼容
Chun-Long Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 56
中文關鍵詞: 人工傳輸線
外文關鍵詞: artificial transmission line
相關次數: 點閱:331下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主要是利用並聯段枝為基礎之人工傳輸線來實現一系列的微型耦合器及一個縮小化波束切換天線。在本論文中,傳統的微帶線將被等效成一人工合成傳輸線,其結構係由兩條串聯的高阻抗微帶線和樹枝狀的並聯段枝所構成。此種以並聯段枝為基礎之人工傳輸線架構將有利於使用摺疊的技術縮小電路尺寸。
在本論文中,利用此並聯段枝為基礎之人工傳輸線,可研製電路面積為傳統電路21%之90°耦合器及電路面積為傳統電路10.1%及3.9%之180°耦合器。在此篇論文中,亦嘗試縮減長度之180°耦合器設計方法。利用該方法可研製為傳統電路17%之180°耦合器,但其量測結果明顯往低頻偏移。
此外,本論文使用縮小化耦合器整合完成縮小尺寸的巴特勒波束成型網路。其量測結果和理論預期結果相當吻合。最後,藉由連接四個偶極天線構成縮小尺寸之波束切換天線陣列,並展現了良好的偏移角度控制能力。


In this thesis, the shunt-stub-based artificial transmission line (SSB ATL) has been introduced and used to realize various miniaturized hybrids and a compact switch-beam antenna. A conventional microstrip line can be equivalent to an ATL realized by two series high-impedance microstrip lines with high-impedance branch-type shunt stubs. The circuit configuration of the SSB ATL is beneficial to miniaturize the circuit size using the folding technique.
By utilizing the SSB ATL, a miniaturized branch-line coupler occupies about 21% circuit size compared with the conventional case. Two miniaturized rat-race couplers occupy 10.1% and 3.9% circuit size of the conventional one at 0.9 and 2.4 GHz, respectively. In addition, the reduced-length technique is also employed to develop a compact rat-race coupler. The developed rat-race coupler achieves 17% circuit size of convention one, but the measured results shift to the lower frequency band.
By integrating miniaturized hybrids, a compact 4 × 4 Butler-matrix beam- forming network can be realized. It performs good phase differences between the adjacent outputs in our expectation. Finally, by connecting four dipole antennas with the developed Butler matrix, a compact switched-beam antenna is demonstrated. It displays good angular-control ability.

摘要…………………………………………………………………………………………….i Abstract………………………………………………………………………………………..ii Chapter 1 Introduction……………………………………………………………………….1 1-1 Study motivation………………………………………………………………… ...1 1-2 Paper survey……………………………………………………………………......1 1-3 Organization of the thesis………………………………………………………….2 Chapter 2 The Miniaturized Components with Shunt-Stub-Based Artificial Transmission Lines ……………………………………………………………….3 2-1 Shunt-stub-based artificial transmission line ………………………………..….....3 2-2 Two shunt-stub-based artificial transmission lines with 50° and 90° electrical lengths……………………………………………………………………7 2-2-1 The synthesis equations for SSB ATL with electrical length θ= 50°….…….7 2-2-2 The synthesis equations for SSB ATL with electrical length θ= 90°…..……9 2-3 Miniaturized Branch-Line Coupler………………………………………………..11 2-4 Miniaturized rat-race coupler…………………………………………………….. 15 2-4-1 The 0.9 GHz miniaturized rat-race coupler……………………………….. 16 2-4-2 The 2.4 GHz miniaturized rat-race coupler……………………………….. 20 Chapter 3 Miniaturized Rat-Race Coupler with Reduced-Length Transmission Lines...25 3-1 Principle of reduced-length RRC………………………………………………… 25 3-2 Reduced-length rat-race coupler using SSB ATLs………………………………. 30 Chapter4 Compact Switched-Beam Antenna with The Miniaturized Butler Matrix….. 34 4-1 Principle of the switched-beam antenna………………………………………….. 34 4-1-1 Principle of equispaced linear array………………………………………. 34 4-1-2 Principle of the Butler matrix…………………………………………….. 36 4-2 Miniaturized 4×4 Butler Matrix ……………………………………………....38 4.2-1 The miniaturized crossover coupler………………………………………. 38 4-2-2 The miniaturized 4×4 Butler matrix…………………………………….. 40 4-3 Compact switched-beam antenna………………………………………………… 43 4-3-1 The printed dipole antenna……………………………………………….. 43 4-3-2 The Compact switched-beam antenna……………………………………. 45 Chapter 5 Conclusions…………………………………………………………………….. 49 Reference……………………………………………………………………………………. 50

[1] D.M. Pozar, Microwave Engineering, 2nd ed. New York: John Wiley & Sons, 1998
[2] E. G. Cristal, “Meander-line and hybrid meander-line transformers,” IEEE Trans. Microwave Theory Tech., vol. MTT-21, pp. 69-76, Feb. 1973.
[3] H. Tanaka, Y. Sasaki, T. Hashimoto, Y. Yagi, and Y. Ishikawa, “Miniaturized 90 degree hybrid coupler using high dielectric substrate for QPSK modulator,” in IEEE MTT-S Int. Microwave Symp. Dig., 1996, pp. 793-796
[4] Q. Xue, K. M. Shum, and C. H. Chan, “Novel 1-D microstrip PBG cells,” IEEE Microwave Guided Wave Lett., vol. 10, pp. 403-405, Oct. 2000.
[5] K. M. Shum, Q, Xue, and C. H. Chan, “A novel microstrip ring hybrid incorporating a PBG cell,” IEEE Microwave Wireless Comp. Lett., vol. 11, pp. 258-260, June 2001.
[6] H. Okabe, C. Caloz, and T. Itoh, “A compact enhanced-bandwidth hybrid ring using an artificial lumped-element left-handed transmission-line section,” IEEE Trans. Microw. Theory Tech., vol. 52, pp. 798-804, Mar. 2004.
[7] G. Monti and L. Tarricone, “Reduced-size broadband CRLH-ATL rat-race coupler,” in Proc. 36th Eur. Microw. Conf., 2006, pp. 125-128.
[8] K.-O. Sun, S.-J. Ho, C.-C. Yen and Daniel ven der Weide, “A compact branch-line coupler using discontinuous microstrip lines” IEEE Microwave Wireless Comp. Lett., vol. 15, pp. 519-520, Aug 2005.
[9] M.-L. Chuang, “Miniaturized ring coupler of arbitrary reduced size,” IEEE Microw. Wireless Compon. Lett, vol. 15, pp. 16-18, Jan. 2005.
[10] J. Gu and X. Sun, “Miniaturization and harmonic suppression rat-race coupler using C-SCMRC resonators with distributive equivalent circuit,” IEEE Microw. Wireless Compon. Lett., vol 15, pp. 880-882, Dce. 2005.
[11] K. W. Eccleston and S. J. M. Ong, “Compact planar microstripline branch-line and rat-race coupler,” IEEE Trans. Microw. Theory Tech., vol. 51, pp.2119-2125, Oct. 2003.
[12] C.-C Chen and C.-K. C. Tzuang, “Synthetic quasi-TEM meandered transmission lines for compacted microwave integrated circuits,” IEEE Trans. Microw. Theory Tech., vol. 52, pp. 1637-1647, Jun. 2004.
[13] C.-W. Wang, T.-G. Ma, and C.-F. Yang, “A new planar artificial transmission line and its applications to a miniaturized Butler Matrix,” IEEE Trans. Microw. Theory Tech., vol. 55,, pp 2792-2801, Dec. 2007.
[14] R. K. Settaluri, G. S. A. Weisshaar, and V. K. Tripathi, “Compact folded line rat-race hybrid couplers,” IEEE Microw. Guided Wave Lett., vol. 10, pp. 61-63, Feb. 2000.
[15] H. Ghali and T. A. Moselhy, “Miniaturized fractal rat-race, branch-line, and coupler-line hybrids” IEEE Trans. Microw. Theory Tech., vol. 52, pp. 2513-2520, Nov. 2004.
[16] T. Wang and K. Wu, “Size-reduction and band-broadening design technique of uniplanar hybrid ring coupler using phase inverter for M(H)MIC’s,” IEEE Trans. Microw. Theory Tech., vol. 47, pp. 198-206, Feb. 1999.
[17] L. Fang, C.-H. Ho, S. Kanamaluru, and K. Chang, “Wide-band reduced-size uniplanar magic-T, hybrid-ring, and de Ronde’s CPW-slot couplers,” IEEE Trans. Microw. Theory Tech., vol. 43, pp. 2749-2758, Dec. 1995.
[18] M. K. Mandal and S. Sanyal, “Reduced-length rat-race couplers,” IEEE Trans. Microw. Theory Tech., vol. 55, pp. 2593-2598, Dec. 2007.
[19] J.-T. Kuo, J.-S. Wu, and Y.-C. Chiou, “Miniaturized rat race coupler with suppression of spurious passband,” IEEE Microw. Wireless Compon. Lett., vol. 17, pp. 46-48, Jan. 2007.
[20] T. Hirota, A. Minakawa, and M. Muraguchi, “Reduced-size branch-line and rat-race hybrids for uniplanar MMIC’s,” IEEE Trans. MIcrow. Theory Tech., vol. 38, pp. 270-275, Mar. 1990.
[21] M. Bona, L. Manholm, J. P. Starski, and B. Svensson, “Low-loss compact Butler matrix for a microstrip antenna” IEEE Trans. MIcrow. Theory Tech., vol. 50, pp. 2069-2075, Sep. 2002
[22] An-Shyi Liu, Hsien-Shun Wu, Ching-kuang C. Tzuang, and Ruey-Beei Wu “Ka-band 32 GHz planar integrated switched-beam smart antenna,” in IEEE MTT-S Int. Microwave Symp. Dig., pp. 12-17, Jun 2005.
[23] George Tudosie, Helmut Barth and Rudiger Vahldiect, “A compact LTCC Butler matrix realization for phase array applications” in IEEE MTT-S Int. Microwave Symp. Dig., pp. 441-444, Jun 2006.
[24] C.-W. Tang and M.-G. Chen, “Synthesizing microstrip branch-line couplers with predetermined compact size and bandwidth,” IEEE Trans. Microw. Theory Tech., vol. 55, pp. 1926-1933, Sep. 2007.
[25] C.-F. Chen, T.-Y. Huang, and R. B. Wu, “A miniaturized net-type microstrip bandpass filter using resonators,” IEEE Microw. Wireless Compon. Lett., vol. 15. pp. 481-483, Jul. 2005.
[26] J. C. Liberti and T.S. Rappaport, Smart Antennas for Wireless Communications:IS-95 and Third Generation CDMA Applications, prentice Hall, 1999
[27] John D. Kraus and Ronald J. Marthefka, Antennas For All Applications, 3rd ed. New York:McGraw-Hill,2003.
[28] R. C. Hansen, Phased Array Antennas, John Wiley & Sons, Inc., 1998.
[29] H.-M Chen, J.-M. Chen, P.-S. Cheng and Y.-F. Lin, “Feed for dual-band printed dipole antenna,” Electron. Lett., vol. 40. no.21, pp. 1320-1322, Oct. 2004.

QR CODE