簡易檢索 / 詳目顯示

研究生: 魏孝哲
Hsiao-Tse Wei
論文名稱: 六臂型變流器之三相永磁式同步電動機驅動器的電流諧波抑制控制策略
Current Harmonics Mitigation Control Strategy for Six-arm Inverter with Three-phase Permanent-magnet Synchronous Motor Drives
指導教授: 黃仲欽
Jonq-Chin Hwang
口試委員: 葉勝年
Sheng-Nian Yeh
劉添華
Tian-Hua Liu
賴炎生
Yen-Shin Lai
林法正
Faa-Jeng Lin
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 130
中文關鍵詞: 六臂型變流器故障控制策略諧波抑制控制
外文關鍵詞: six-arm inverter, post-fault control, harmonics mitigation control
相關次數: 點閱:267下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在研製高穩定性與低轉矩漣波之六臂型三相變流器永磁式同步電動機的驅動器。電力電路採用六臂型三相變流器,每相繞組個別獨立,可提升系統直流鏈電壓使用率,並使用零相序電流估測器以計算電流的三次諧波含量,做為抑制電流三次諧波含量之補償信號。在單相故障後,使未故障之兩相電流相差60度,注入抑制三次諧波之補償量,抑制未故障兩相電流之諧波,以減少電動機轉矩漣波。
    本文以計算機模擬軟體Matlab/Simulink模擬永磁式同步電動機驅動器,並比較各種電流控制與電流諧波抑制控制策略,以及故障前與故障後電流諧波抑制控制策略之性能,做為實體製作之依據。文中採用數位信號處理器TMS320F288335為控制核心,完成六臂型三相變流器之永磁式同步電動機驅動系統研製,其中控制程式以C語言完成。本系統在故障前之電動機電流三次諧波含量由28.71%降低至3.05%。需供應之電流峰值由1.212 標么降至1.017標么,零軸電流由0.256 標么降至0.021 標么。當a相故障後,b相電流的三次諧波含量由7.00%降至1.36%,c相電流的三次諧波含量由9.91%降至3.06%。零軸信號之三次諧波含量由25.19%減少至2.19%,電磁轉矩漣波由85.57%減少至2.85%,由實測結果可驗證本文的控制策略可行性。


    This dissertation focuses on development of low-torque ripple and high stability with a six-arm inverter for three-phase permanent-magnet synchronous motor (PMSM) drives. In this structure, the power circuit uses six-arm three-phase inverter. Each phase of the PMSM is operating independently to raise the utilization factor of dc-link voltage. By using zero-sequence current estimator, it calculates the content of third-harmonic in current. These calculated results can be used to eliminate the third-harmonic of current. When a winding of three-phase PMSM breaks down, the other two winding currents will be corrected to result in a 60-degree angle difference. The component which can suppress the third-harmonic of current was injected into healthy phases to eliminate currents harmonics, thereby reducing torque ripple.
    In this dissertation, Matlab/Simulink is used to simulate the proposed PMSM system. Performances with different current control and current harmonics mitigation control strategies for PMSM operated under normal and post-fault conditions are compared. This control method could be used to implementation of system. A prototype PMSM system was built with TMS302F28335 digital signal processor. And the program was completed by C language. Under the normal operation of the system, the third-harmonic of current decreases from 28.71% to 3.05%. The peak current required for system falls from 1.212 pu to approximately 1.017 pu. The current of zero-axis decreases from 0.256 pu to 0.021 pu. When the phase a open-circuit is in fault condition, the third-harmonic of current in phase b decreases from 7.00% to 1.36%. The third-harmonic of current in phase c decreases from 9.91% to 3.06%. The third-harmonic of current in zero-axis falls from 25.19 pu to 2.19 pu. The electromagnetic torque ripple decreases from 85.57% to 2.85%.The proposed system performance is thus verified experimentally.

    中文摘要 I 英文摘要 II 誌  謝 III 目  錄 IV 符號說明 VII 圖表索引 XII 第一章 緒論 1   1.1 研究動機與目的 1   1.2 文獻探討 1   1.3 系統架構與本文特色 6   1.4 本文大綱 7 第二章 三相永磁式同步電動機的數學模式 9   2.1 前言. 9   2.2 三相永磁式同步電動機數學模式 9   2.3 三相永磁式同步電動機交直零軸轉換之數學模式 12   2.4 轉速及磁場角位置之偵測方法 18   2.5 結語 20 第三章 六臂型變流器之三相永磁式同步電動機驅動器電流諧波抑制控制策略 21   3.1 前言 21   3.2 三相永磁式同步電動機轉速控制策略 21   3.3 abc軸電流控制策略 22   3.4 交直軸電流控制策略 24   3.5 交直零軸電流控制策略 26 3.6 電流諧波抑制控制策略 28   3.7 電流諧波抑制控制策略模擬與實測 31 3.8 結語 46 第四章 六臂型變流器之三相永磁式同步電動機單相故障後諧波抑制控制策略 47   4.1 前言 47   4.2 六臂型變流器之三相永磁式同步電動機故障偵測 47   4.3 六臂型變流器之三相永磁式同步電動機單相故障後的電磁功率 與轉矩 50     4.3.1 六臂型變流器之三相永磁式同步電動機單相繞組故障後 電磁功率與轉矩 50     4.3.2 六臂型變流器之三相永磁式同步電動機含有諧波成分故 障後之電磁功率 54   4.4 三相永磁式同步電動機單相故障後電流控制策略 57     4.4.1 單相故障後之abc軸電流控制策略 57     4.4.2 單相故障後之交直軸電流控制策略 58     4.4.3 電動機驅動器單相故障後之電流諧波抑制控制策略 61   4.5 結語 71 第五章 實體製作與實測 72 5.1 前言 72 5.2 硬體架構 72 5.2.1 六臂型三相變流器 71 5.2.2 數位信號處理器介面電路 73 5.2.3 電流偵測電路 76 5.2.4 電壓偵測電路 77 5.3 軟體規劃 78 5.3.1 主程式流程規劃 78 5.3.2 永磁式同步電動機驅動控制程式流程規劃 80 5.3.3 電流諧波抑制控制策略程式流程規劃 82 5.3.4 單相故障後諧波抑制控制策略程式流程規劃 84 5.4 單相故障後電流諧波抑制控制策略之模擬與實機測試 86 5.5 結語 114 第六章 結論與建議 115   6.1 結論 115   6.2 建議 117 參考文獻 118 附錄 A 128 附錄 B 128 作者簡介 129

    [1] Z. Bing, X. Kejian, L. Weiting and L. JinXing, “Research on Fault Tolerant Control of Marine Multi-phase Permanent Magnet Synchronous Motors Propulsion systems,” Proceedings of the Eighth International Conference on Electrical Machines and Systems, vol. 3, pp. 2511 –2514, 2005.
    [2] W. Fernando, M. Barnes and O. Marjanovic, “Modelling and Control of Variable Frequency Multiphase Multi-machine AC-DC Power Conversion Systems,” International Conferences on Power Electronics, Machines and Drives , pp. 1-6, 2010.
    [3] W. U. N. Fernando, M. Barnes and O. Marjanovic, “Direct Drive Permanent Magnet Generator Ded AC–DC Active Rectification and Control for More-electric Aircraft Engines,” IET Electric Power Applications, vol. 5, no. 1, pp. 14–27, 2011.
    [4] L. Parsa and H. Toliyat, “Fault-tolerant Interior-permanent-Magnet Machines for Hybrid Electric Vehicle Applications,” IEEE Transactions on Vehicular Technology, vol. 56, no. 4, pp. 1546 –1552, 2007.
    [5] A. S. Ahmed and N. A. O. Demerdash, "Fault-tolerant Technique for Δ-connected AC-motor Drives," IEEE Transactions on Power Electronics, vol. 21, pp 3041-3049, 2012.
    [6] A. S. Ahmed, B. Mirafzal and N. A. O. Demerdash, "Fault-tolerant Technique for Δ-connected AC-Motor Drives," IEEE Transactions on Energy Conversion, vo1. 26. pp. 646-653, 2011.
    [7] S. Bolognani, M. Zordan and M. Zigliotto, "Experimental Fault-tolerant Control of a PMSM Drive, " IEEE Transactions on Industrial Electronics, vol. 47, no. 1, pp. 1134–1141, 2000.
    [8] R. R. Errabelli and P. Mutschler, "Fault-tolerant Voltage Source Inverter for Permanent Magnet Drives," IEEE Transactions on Power Electronics, vol. 27, pp. 500-508, 2012.
    [9] Q. T. An, L.Z. Sun, K. Zhao and Z. Sun, "Switching Function Model-based Fast-diagnostic Method of Open-switch Faults in Inverters Without Sensors," IEEE Transactions on Power Electronics, vol. 26, pp. 119-126, 2011.
    [10] A. Mohammadpour and L. Parsa, "A Unified Fault-tolerant Current Control Approach for Five-phase PM Motors with Trapezoidal Back EMF Under Different Stator Winding Connections," IEEE Transactions on Power Electronics, vol. 28, pp. 3517-3527, 2013.
    [11] F. Yu, X. F. Zhang, M. Z. Qiao and C. D. Du, "The Direct Torque Control of Multiphase Permanent Magnet Synchronous Motor Based on Low Harmonic Space Vector PWM," IEEE International Conferences on Industrial Technology, pp.1-5, 2008.
    [12] S. Xue, X. H. Wen and Z. Feng, "Multiphase Permanent Magnet Motor Drive System Based on A Novel Multiphase SVPWM," International Conferences of Power Electronics and Motion Control, pp.1-5, 2006.
    [13] T. J. Wang, F. Fang, X. S. Wu and X. Y. Jiang, "Novel Filter for Stator Harmonic Currents Reduction in Six-step Converter Fed Multiphase Induction Motor Drives," IEEE Transactions on Power Electronics, vol. 28, pp. 498-506, 2013.
    [14] F. J. Lin, Y. J. Hung, J. C. Hwang and M. T. Tsai, "Fault-tolerant Control of a Six-Phase Motor Drive System Using a Takagi-sugeno-kang Type Fuzzy Neural Network With Asymmetric Membership Function," IEEE Transactions on Power Electronics, vol. 28, pp. 3357-3572, 2013.
    [15] C. B. Bae, Y. K. Kim, J. M. Kim and H. C. Kim, "Vector Control and Harmonic Ripple Reduction with Independent Multi-phase PMSM," International Conferences of Power Electronics, pp.1056-1063, 2010.
    [16] V. Oleschuk, A. Sizov, B. K. Bose and A. M. Stankovic, "Phase-shift-based Synchronous Modulation of Dual Inverters for an Open-End Winding Motor Drive with Elimination of Zero-sequence Currents," International Conferences of Power Electronics and Drives Systems, vol. 1, pp. 325-330, 2005.
    [17] 魏孝哲,六臂型變流器之三相永磁式同步電動機驅動器之故障後控制策略,國立台灣科技大學電機研究所碩士論文,民國九十八年。
    [18] 劉建村,六相永磁式同步電動機設計及故障後控制策略,國立台灣科技大學電機研究所碩士論文,民國九十九年。
    [19] L. H. Hoang, P. Robert and F. Rene, "Minimization of Torque Ripple in Brushless DC Motor Drives," IEEE Transactions on Industry Applications, vol. 4, no. 4, pp. 748-755, 1986.
    [20] N. Urasaki, T. Senjyu, K. Uezato and T. Funabashi, "An Adaptive Dead-Time Compensation Strategy for Voltage Source Inverter Fed Motor Drives," IEEE Transactions on Power Electronics, vol. 10, no. 5, pp. 1150-1160, 2005.
    [21] S. Y. Kim and S. Y. Park, "Compensation of Dead-Time Effects Based on Adaptive Harmonic Filtering in the Vector-controlled AC Motor Drives," IEEE Transactions on Industrial Electronics, vol. 54, no. 3, pp. 1768-1777, 2007.
    [22] A. R. Munoz and T. A. Lipo, "On-line Dead-time Compensation Technique for Open-loop PWM-VSI Drives," IEEE Transactions on Power Electronics, vol. 14, no. 4, pp. 683-687, 1999.
    [23] D. Leggate and R. Kerkman, "Pulse Based Dead Time Compensator for PWM Voltage Inverters," IEEE Transactions on Industrial Electronics, vol. 44, pp. 191–197. 1997
    [24] P. Mattavelli, L. Tubiana and M. Zigliotto, "Torque-ripple Reduction in PM Synchronous Motor Drives Using Repetitive Current Control," IEEE Transactions on Power Electronics, vol. 20, no. 6, pp.1423-1431, 2005.
    [25] H. Zhu, X. Xiao and Y. D. Li, "Permanent Magnet Synchronous Motor Current Ripple Reduction with Harmonic Back-EMF Compensation," International Conferences of Electrical Machines and Systems, pp. 1094-1097, 2010.
    [26] T. Nakai and H. Fujimoto, "Harmonic Current Suppression Method of SPM Motor Based on Repetitive Perfect Tracking Control with Apeed Variation," Annual Conferences of IEEE Industrial Electronics, pp. 1210-1215, 2008.
    [27] N. Nakao and K. Akatsu, "A New Control Method for Torque Ripple Compensation of Permanent Magnet Motors," International Conferences of Power Electronics, pp. 1421-1427, 2010.
    [28] G. H. Lee, S. I. Kim, J. P. Hong and J. H. Bahn, "Torque Ripple Reduction of Interior Permanent Magnet Synchronous Motor Using Harmonic Injected Current," IEEE Transactions on Magnetics, vol. 44, no. 6, pp. 1582-1585, 2005.
    [29] R. L. De Araujo Ribeiro, C. C. De Azevedo and R. M. De Sousa, "A Robust Adaptive Control Strategy of Active Power Filters for Power-factor Correction, Harmonic Compensation, and Balancing of Nonlinear Loads," IEEE Transactions on Power Electronics, vol. 27, pp. 718-730, 2012.
    [30] F. Bertling and S. Soter, "Improving Grid Voltage Quality by Decentral Injection of Current Harmonics," IEEE Conferences of Industrial Electronics Society, pp. 2535-2537, 2005.
    [31] S. S. Kim, "Harmonic Reference Current Generation for Unbalanced Nonlinear Loads," IEEE Conferences of Power Electronics Specialist, vol. 2, pp. 773-778, 2003.
    [32] S. S. Kim, "Active Zero-sequence Cancellation Technique in Unbalanced Commercial Building Power System," IEEE Applied Power Electronics Conference and Exposition, vol. 1, pp. 185-190, 2004.
    [33] D. Hanselman, Brushless Permanemt Magnet Motor Design, Magna Physics Publishing, 2006.
    [34] J. C. Hwang and H. T. Wei, "The Current Harmonics Elimination Control Strategy for Six-leg Three-phase Permanent Magnet Synchronous Motor Drives," IEEE Transactions on Power Electronics, vol. 29, pp. 3032-3040, 2014.
    [35] T. H. Liu, J. R. Fu and T. A. Lipo, “A Strategy for Improving Reliability of Field-Oriented Controlled Induction Motor Drives,” IEEE Transactions on Industry Applications, vol. 29, no. 5, pp. 910–918, 1993.
    [36] D. Kastha and A. K. Majumdar, "An Improved Starting Strategy for Voltage-Source Inverter Fed Three Phase Induction Motor Drives Under Inverter Fault Conditions," IEEE Transactions on Industry Applications, vol. 15, no. 4, 2000.
    [37] D. Kastha and B. K. Bose, “Investigation of Fault Modes of Voltage-fed Inverter System for Induction Motor Drive,” IEEE Transactions on Industry Applicat., vol. 30, pp. 1028–1038, 1994.
    [38] G. Gentile, N. Rotondale, and M. Tursini, “Investigation of Inverter-Fed Induction Motors Under Fault Conditions,” IEEE Recording of Power Electronics Specialists Conference, pp.126–132, 1992.
    [39] D. Kastha and B. K. Bose, “Fault Mode Single Phase Operation of a Variable Frequency Induction Motor Drive and Improvement of Pulsating Torque Characteristic,” IEEE Transactions on Industrial Electronics, vol. 41, pp. 426–433, 1994.
    [40] R. Kianinezhad, B. Nahid-Mobarakeh, L. Baghli, F. Betin and G. Capolino, “Modeling and Control of Six-phase Symmetrical Induction Machine Under Fault Condition Due to Open Phases,” IEEE Transactions on Industry Applications, vol. 55, no. 5, pp. 1966-1977, 2008.
    [41] J. P. Martin, F. Meibody-Tabar and B. Davat, “Multi-Phase Permanent Magnet Synchronous Machine Supplied by VSI Working Under Fault Conditions,” IEEE Recording of IAS Annual Meeting, vol. 3, pp. 1710–1717, 2000.
    [42] C. B. Jacobina, R. S. Miranda, M. B. de R. Corrêa and A. M. N. Lima, “Disturbance-free Operation of a Six-phase AC Motor Drive System,” IEEE Annual Conference of Power Electronics Specialists, vol. 2, pp. 925–931, 2004.
    [43] R. L. de Araujo Ribeiro, C. B. Jacobina, E. R. C. da Silva and A. M. N. Lima, “Fault-tolerant Voltage-fed PWM Inverter AC Motor Drive Systems,” IEEE Transactions on Industry Electronic, vol. 51, no. 2, pp. 439–446, 2004.
    [44] A. M. Mendes and A. J. Marques Cardoso, “Fault-tolerant Operating Strategies Applied to Three-phase Induction Motor Drives,” IEEE Transactions on Industrial Electronics, vol. 53, no. 6, pp. 1807–1817, 2006.
    [45] X. M. Kou, K. A. Corzine and Y. L. Familiant, "A Unique Fault-tolerant Design for Flying Capacitor Multilevel Inverter," IEEE Transactions on Power Electronics, vol. 19, no. 4, pp. 979 - 987, 2004.
    [46] A. L. Chen, L. Hu, L. F. Chen, Y. Deng and X. N. He, "A Multilevel Converter Topology with Fault-tolerant Ability," IEEE Transactions on Power Electronics, vol. 20, no. 2, pp. 405 - 415, 2005.
    [47] G. Sinha, C. Hochgraf, R. H. Lasseter, D. M. Divan and T. A. Lipo, “Fault Protection in a Multilevel Inverter Implementation of a Static Condenser,” Proceeding of the IEEE Industry Applications Society Conference, vol. 3, pp. 2557–2564, 1995
    [48] F. Richardeau, P. Baudesson and T. A. Meynard, “Failures-tolerance and remedial strategies of a PWM multicell inverter,” IEEE Transactions on Power Electronic, vol. 17, pp. 905–912, 2002.
    [49] C. Turpin, P. Baudesson, F. Richardeau, F. Forest and T. A. Meynard, “Fault Management of Multicell Converters,” IEEE Transactions on Power Electronics, vol. 49, pp. 988–997, 2002.
    [50] B. Francois and J. P. Hautier, “Design of a Fault Tolerant Control System for a N.P.C. Multilevel Inverter,” Proceeding of the IEEE International Symposium Industrial Electronics, vol. 4, pp. 1075–1080, 2002,
    [51] S. Bolognani, M. Zordan and M. Zigliotto, “Experimental Fault-Tolerant Control of a PMSM Drive,” IEEE Transactions on Industrial Electronics, vol. 47, no. 1, pp. 1134–1141, 2000.
    [52] M. Naidu, S. Gopalakrishnan and T. Nehl, “Fault-tolerant Permanent Magnet Motor Drive Topologies for Automotive X-by-wire Systems,” IEEE Transactions on Industry Applications Society Annual Conference Record, pp. 1-8, 2008.
    [53] R. Peuget, S. Courtine and J.P. Rognon, “Fault Detection and Isolation on a PWM Inverter by Knowledge-based Model,” IEEE Transactions on Industry Applications, vol. 34, no. 6, pp. 1318–1326, 1998.
    [54] S. M. Jung, J. S. Park, H. S. Kim, H. W. Kim, and M. J. Youn, “Simple Switch Open Fault Detection Method of Voltage Source Inverter,” Proceeding of the IEEE Energy Conversion Congress and Exposition, pp. 3175–3181, 2009.
    [55] C. J. Gajanayake, B. Bhangu, S. Nadarajan, and G. Jayasinghe, "Fault Tolerant Control Method to Improve the Torque and Speed Response in PMSM Drive with Winding Faults," IEEE International Conferences of Power Electronics and Drive Systems, pp. 956 - 961, 2011.
    [56] F. Aghili, "Fault-tolerant Torque Control of BLDC Motors," IEEE Transactions on Power Electronic, vol. 26, no. 2, 2011.
    [57] F. Aghili, "Optimal and Fault-tolerant Torque Control of Servo Motors Subject to Voltage and Current Limits," International Conference on Intelligent Robots and Systems, pp. 3784 - 3791, 2011.
    [58] O. Moseler and R. Isermann, “Application of Model-based Fault Detection to a Brushless DC Motor,” IEEE Transactions on Power Electronics, vol. 47, no. 5, pp. 1015–1020, 2000.
    [59] S. Nandi, H. A. Toliyat, and X. Li, “Condition Monitoring and Fault Diagnosis of Electrical Motors a Review,” IEEE Transactions on Energy Conversion, vol. 20, no. 4, pp. 719–729, 2005.
    [60] M. A. Awadallah and M. M. Morcos, “Diagnosis of Stator Short Circuits in Brushless DC Motors by Monitoring Phase Voltages,” IEEE Transactions on Energy Conversion, vol. 20, no. 1, pp. 246–247, Mar. 2005.
    [61] M. K. Metwally, "Direct Torque Control of Four Switch Three Phase Inverter Fed Induction Motor Sensorless Speed Drive," International Journal of Power Electronics and Drive System, vol. 5, No. 2, pp. 153 - 165, Oct. 2014.
    [62] M. Azab, and A. L. Orille “Novel Flux and Torque Control of Induction Motor Drive Using Four Switch Three Phase Inverter” Annual Conferences of the IEEE Industrial Electronics Society, vol. 1, pp. 1268 -1273. 2001.
    [63] B. El Badsi, B. B. Bouzidi and A. Masmoudi, “DTC Scheme for a Four-Switch Inverter-fed Induction Motor Emulating the Six-switch Inverter Operation,” IEEE Transactions on Power Electronics, vol. 28, pp. 3528 - 3538, July, 2013.
    [64] A. B. A. Bennani, M. G. Cherif and I. S. Belkhodja, "New Fault Tolerant DTC Control for Induction Machine Drives," Conferences of the Power Electronics and Motion Control, pp. 1149 - 1154, 2008.
    [65] D. Sun, and J. Meng, "A Single Neuron PID Controller Based PMSM DTC Drive System Fed by Fault Tolerant 4-Switch 3-Phase Inverter," IEEE Conferences of Industrial Electronics and Applications, pp. 1 -5, 2006.
    [66] W.X. Zhao , M. Cheng , K. T.Chau , W. Hua , H. Y. Jia , J. H. Ji and W. L. Li, "Stator-flux-oriented Fault-tolerant Control of Flux-switching Permanent-magnet Motors," IEEE Transactions on Magnetics, vol. 47, no. 10, 2011.
    [67] S. Aouaouda and M. Boukhnifer, "Observer-based Fault Tolerant Controller Design for Induction Motor Drive in EV," IEEE Conferencea of Control Applications, pp. 1190 - 1195, 2014.
    [68] M. Jin, C. Wang, J. Shen and B. Xia, “A Modular Permanent-magnet Flux-switching Linear Machine with Fault-tolerant Capability,” IEEE Transactions on Magnetics, vol. 45, no. 8, pp. 3179–3186, Aug. 2009.
    [69] R. L. Owen, Z. Q. Zhu, A. S. Thomas, G. W. Jewell and D. Howe, " Alternate Poles Wound Flux-switching Permanent-magnet Brushless AC Machines,” IEEE Transactions on Industry Applications, vol. 46, no. 2, pp. 790–797, 2010.
    [70] W. Zhao, M. Cheng, W. Hua, H. Jia and R. Cao, “Back-EMF Harmonic Analysis and Fault-tolerant Control of Flux-switching Permanent-magnet Machine with Redundancy,” IEEE Transactions on Industrial Electronics, vol. 58, no. 5, pp. 1926–1936, 2011.
    [71] M. Aleenejad, R. Ahmadi and P. Moamaei, "A Modified Selective Harmonic Elimination Method for Fault-tolerant Operation of Multilevel Cascaded H-bridge Inverters," Conferences of Power and Energy, pp. 1 - 5, 2014.
    [72] M. S. A. Dahidah, V. G. Agelidis and M. V. Rao, "Hybrid Genetic Algorithm Approach for Selective Harmonic Control," Elsevier Journal of Energy Conversion Management vol. 49, pp. 131–142, 2008.
    [73] S. Li and L. Xu, “Strategies of Fault Tolerant Operation for Three Level PWM Inverters,” IEEE Transactions on Power Electronics, vol. 21, no. 4, pp. 933–940, 2006.
    [74] W. Song and A. Q. Huang, “Control Strategy for Fault-tolerant Cascaded Multilevel Converter Based STATCOM,” IEEE Conferences of Applied Power Electronics, pp. 1073–1076, 2007.
    [75] Y. Zang, X. Wang, B. Xu and J. Liu, ‘Control Method for Cascaded H-Bridge Multilevel Inverter Failures,’ Proceeding of Intelligent Control and Automation, vol. 2, pp. 8462–8466, 2006.
    [76] W. U. N. Fernando and M. B. Model, "Based Optimization and Fault Tolerant Control of Permanent Magnet Machines with Harmonic Injection Pulse Width Modulation," Conference of IEEE Vehicle Power and Propulsion, pp. 1-6. 2011.
    [77] N. Bianchi, S. Bolognani, M. Pre and G. Grezzani, “Design Considerations for Fractional-slot Winding Configurations of Synchronous Machines,” IEEE Transactions on Industry Applications, vol. 42, no. 4, pp. 997 –1006, 2006.
    [78] G. Atkinson, B. Mecrow, A. Jack, D. Atkinson, P. Sangha and M. Benarous, “The Design of Fault Tolerant Machines for Aerospace Applications,” IEEE International Conference on Electric Machines and Drives, pp. 1863 –1869, 2005.
    [79] K. Atallah, J. Wang and D. Howe, “Torque-ripple Minimization in Modular Permanent-magnet Brushless Machines,” IEEE Transactions on Industry Applications, vol. 39, no. 6, pp. 1689 – 1695, 2003.
    [80] N. Bianchi, S. Bolognani and M. Pre, “Impact of Stator Winding of a Five-Phase Permanent-Magnet Motor on Post Fault Operations,” IEEE Transactions on Industrial Electronics, vol. 55, no. 5, pp. 1978 –1987, 2008.
    [81] S. Dwari and L. Parsa, “Fault-tolerant Control of Five-phase Permanent Magnet Motors with Trapezoidal Back Emf,” IEEE Transactions on Industrial Electronics, vol. 58, no. 2, pp. 476 –485, 2011.
    [82] 金德昌,永磁式同步電動機之設計及其轉速控制系統研製,國立台灣科技大學電機研究所碩士論文,民國九十七年。
    [83] V. Blasko, J. C. Moreira and T. A. Lipo, ”A New Field Oriented Controller Utilizing Spatial Position Measurement or Rotor Ring Current,” IEEE Power Electronics Specialists Conference, pp. 295-299, 1989.
    [84] 高旭佳,向量控制感應電動機驅動系統電腦輔助設計,國立台灣科技大學電機工程技術研究所,民國88年。
    [85] 鄭乃文,定子磁通導向之感應機向量控制系統分析與設計,國立台灣科技大學電機工程技術研究所,民國85年。
    [86] J. A. Santisteban and R. M. Stephan, “Vector Control Methods for Induction Machines: An Overview,” IEEE Transactions on Education, vol. 44, no. 2, pp. 170-174, 2001.

    無法下載圖示 全文公開日期 2020/07/24 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE