研究生: |
陳敬樺 Ching-Hua Chen |
---|---|
論文名稱: |
智慧操控紫外光二極體發光功率 Smart control of the light power of ultraviolet light-emitting diodes |
指導教授: |
葉秉慧
Pinghui Sophia Yeh |
口試委員: |
葉秉慧
Pinghui Sophia Yeh 李志堅 Chih-Chien Lee 周錫熙 H-H Chou 徐世祥 Shih-Hsiang Hsu |
學位類別: |
碩士 Master |
系所名稱: |
電資學院 - 電子工程系 Department of Electronic and Computer Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 137 |
中文關鍵詞: | 紫外光二極體 、監控光偵測器 、監控響應率 、智慧操控 |
外文關鍵詞: | UV LED, monitoring photodiode, monitoring responsivity, Smart control |
相關次數: | 點閱:622 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文使用商業紫外光發光二極體(UV LED)晶圓製作積體化UV LED與監控光偵測器(monitoring photodiode; MPD)。量測UV LED的基本光電特性,量測MPD的基本光電特性,包括暗電流與不同偏壓下的光電流和量子效率。以MPD即時監控同一晶片上的UV LED發光功率,量測MPD不同偏壓下的監控響應率,並以運算放大器(Operational Amplifier)將MPD光電流訊號轉成電壓訊號,再將電壓信號傳送進Arduino的類比數位轉換器(Analog-to-digital converter,ADC),最後藉由藍牙傳輸至手機端顯示UV LED光功率。
在UV LED光電特性量測下,紫外光發光二極體啟動電壓(Turn On Voltage)約為3.05 V,其串聯電阻為10.2 Ω。當紫外光發光二極體電流為20 mA下,光輸出功率為4.43 mW。
當UV LED電流由0 mA增加至20 mA,MPD在偏壓0 V下,其光電流由0 A增加至8.64 × 10-5 A,監控響應率維持在約20 mA/W;在逆向偏壓3 V下,其光電流由0 A增加至1.02 × 10-4 A,其監控響應率維持在22至23 mA/W,並將光電流對光功率作圖可得非常好的線性關係。
在模組電路中,由手機設定發光二極體驅動電壓範圍為3.082 V至3.134 V,其對應注入電流為8 mA至13 mA,手機端顯示的光功率為1.72 mW至2.73 mW,MPD電壓為3.02 V至4.78 V,光功率最大誤差為4.86 %。
In this paper, a commercial Ultraviolet Light Emitting Diode (UV LED) wafer is used to fabricate integrated UV LED and monitoring photodiode (MPD). The characteristics of the basic photoelectric properties of UV LED, as well as MPD basic photoelectric properties including dark current, photocurrent and quantum efficiency under different bias voltages were measured The light power of UV LED on the same chip is monitored by using MPD in real time under different bias voltages. Operational Amplifier converts the photocurrent signal from MPD to voltage signal and send it to the Analog to Digital Converter (ADC) in Arduino. The display of UV LED light power is finally transmitted to mobile phone via Bluetooth.
The measured UV LED has characteristics of turn-on voltage and series resistance of 3.05 V and 10.2 Ω, respectively. The UV LED light power shows 4.43 mW when the injection current is 20 mA.
When the UV LED current increases from 0 mA to 20 mA and MPD is biased at 0 V, its photocurrent increases from 0 A to 8.64 × 10-5 A and the monitoring responsivity of MPD is maintained at about 20 mA/W; in reverse bias at 3 V, its photocurrent increases from 0 A to 1.02 × 10-4 A and the monitoring responsivity is maintained at 22 – 23 mA/W. Therefore, a very good linear relationship can be obtained by plotting photocurrent to light power
In the module circuit, the LED driving voltage range is set by the mobile phone to be 3.082 V to 3.134 V, and the corresponding injection current is 8 mA to 13 mA. Thus, the light power displayed on the mobile phone is 1.72 mW to 2.73 mW, and the MPD voltage is 3.02 V to 4.78 V. Based on measurements displayed on the mobile phone compared to the Automated Testing Equipment (ATE) of Chroma, the maximum error of light power is 4.86%.
[1] E. Fred Schubert (2006). Light-emitting diode. Cambridge University Press. New York.
[2] G. Y. Xu, A. Salvador, W. Kim, Z. Fan, C. Lu, H. Tang, H. Morkoç, G. Smith, M. Estes, B. Goldenberg, W. Yang, S. Krishnankutty (1997). High speed, low noise ultraviolet photodetectors based on GaN structures. Appl. Phys. Lett., 71, 2154.
[3] D. Walker, X. Zhang, P. Kung, A. Saxler, S. Javadpour, J. Xu & M. Razeghi (1996). AlGaN ultraviolet photoconductors grown on sapphire. Appl. Phys. Lett., 68, 2100.
[4] J. B. Limb, D. Yoo, J. H. Ryou, W. Lee, S. C. Shen, R. D. Dupuis, M. L. Reed, C. J. Collins, M. Wraback, D. Hanser, E. Preble, N. M. Williams, K. Evans (2006). GaN ultraviolet avalanche photodiodes with optical gain greater than 1000 grown on GaN substrates by metal-organic chemical vapor deposition. Appl. Phys. Lett., 89, 011112.
[5] A. Osinsky, S. Gangopadhyay, R. Gaska, B. Williams, M. A. Khan, D. Kuksenkov, & H. Temkin(1998). Visible-blind GaN Schottky barrier detectors grown on Si (111). Appl. Phys. Lett., 71, 2334.
[6] G. Parish, S. Keller, P. Kozodoy, J. A. Ibbetson, H. Marchand, P. T. Fini, S. B. Fleischer, S. P. DenBaars, U. K. Mishra (1999). High-performance (Al,Ga)N-based solar-blind ultraviolet p–i–n detectors on laterally epitaxially overgrown GaN. Appl. Phys. Lett., 75, 247.
[7] E. Monroy, M. Hamilton, D. Walker, P. Kung, F. J. Sánchez, & M. Razeghi (1999). High-quality visible-blind AlGaN pin photodiodes. Appl. Phys. Lett., 74, 1171.
[8] Y. Zhang, S. -C. Shen, H. J. Kim, S. Choi, J.-H. Ryou, R. D.Dupuis, & B. Narayan (2009). Low-noise GaN ultraviolet p-i-n photodiodes on GaN substrates. Appl. Phys. Lett., 94, 221109.
[9] K. A. McIntosh, R. J. Molnar, L. J. Mahoney, A. Lightfoot, M. W. Geis, K. M. Molvar, I. Melngailis, R. L. Aggarwal, W. D. Goodhue, S. S. Choi, D. L. Spears, S. Verghese (1999). GaN avalanche photodiodes grown by hydride vaporphase epitaxy. Appl. Phys. Lett., 75, 3485.
[10] B. Yang, T. Li, K. Heng, C. Collins, S. Wang, J. C. Carrano, R. D. Dupuis, J. C. Campbell, M. J. Schurman, I. T. Ferguson (2000). Low dark current GaN avalanche photodiodes. IEEE J. Quantum Electron., 36(12), 1389-1391.
[11] S-C. Shen, Y. Zhang, D. Yoo, J-B. Limb, J-H. Ryou, P. D. Yoder, & R. D. Dupuis (2007). Performance of Deep Ultraviolet GaN Avalanche Photodiodes Grown by MOCVD. IEEE Photon. Technol. Lett., 19(21), 1744-1746.
[12] J. B. Limb, D. Yoo, J. H. Ryou, W. Lee, S. C. Shen, R. D. Dupuis, M. L. Reed, C. J. Collins, M. Wraback, D. Hanser, E. Preble, N. M. Williams, K. Evans (2006). GaN ultraviolet avalanche photodiodes with optical gain greater than 1000 grown on GaN substrates by metal-organic chemical vapor deposition. Appl. Phys. Lett., 89, 011112.
[13] Shyh-Chiang Shen, Tsung-Ting Kao, Hee-Jin Kim, Yi-Che Lee, Jeomoh Kim, Mi-Hee Ji, Jae-Hyun Ryou, Theeradetch Detchprohm, Russell D. Dupuis (2015). GaN/InGaN avalanche phototransistors. Appl. Phys. Express, 8, 032101.
[14] R. Mouillet, A. Hirano, M. Iwaya, T. Detchprohm, H. Amano, & I. Akasaki (2001). Photoresponse and Defect Levels of AlGaN/GaN Heterobipolar Phototransistor Grown on Low-Temperature AlN Interlayer. Jpn. J. Appl. Phys., 40, 498
[15] Wei Yang, Thomas Nohava, Subash Krishnankutty, Robert Torreano, Scott McPherson, & Holly Marsh (1998). High gain GaN/AlGaN heterojunction phototransistor. Appl. Phys. Lett. 73(7). 978-980.
[16] Min Zhu, Jun Chen, Jintong Xu, Xiangyang Li (2017). Optimization of GaN/InGaN Heterojunction Phototransistor. IEEE Photon Technol Lett, 29(4), 373-376.
[17] Tsung-Ting Kao, Jeomoh Kim, Theeradetch Detchprohm, Russell D. Dupuis, Shyh-Chiang Shen (2016). High-Responsivity GaN/InGaN Heterojunction Phototransistors. IEEE Photon Technol Lett, 28(19), 2035-2038.
[18] Pinghui S. Yeh, Teng-Po Hsu, Yen-Chieh Chiu, Sian Yang, Cheng-You Wu, Jung-Shan Liou (2017). III-Nitride Phototransistors Fabricated on a Light-Emitting-Diode Epitaxial Wafer. IEEE Photonics Technology Letters, 29(19), 1679-1682.
[19] M. L. Lee, J. K. Sheu, Yung-Ru Shu (2008). Ultraviolet bandpass Al0.17Ga0.83N/GaN heterojunction phototransistors with high optical gain and high rejection ratio. Appl. Phys. Lett., 92, 053506.
[20] K.-Y. Liou, U. Koren, S. Chandrasekhar, T. L. Koch, A. Shahar, C. A. Burrus, and R. P. Gnall (1989). Monolithic integrated InGaAsP/InP distributed feedback laser with Y-branching waveguide and a monitoring photodetector grown by metalorganic chemical vapor deposition. Applied Physics Letters 89, 071110
[21] Ching-Hui Chen, and Si-Chen Lee. Monolithic integration of an AlGaAs/GaAs surface emitting laser diode and a photodetector. Appl. Phys. Lett. 59, 3592
[22] Zhaojun Liu, Jun Ma, Tongde Huang, Chao Liu, and Kei May Lau (2014). Selective epitaxial growth of monolithically integrated GaN-based light emitting diodes with AlGaN/GaN driving transistors. Appl. Phys. Lett. 104, 091103
[23] Roithner Lasertechnik, “UVA SiC photodiode,” SIC01S-A18 datasheet, Mar. 2017
[24] Roithner Lasertechnik, “UV Sensor Modules based on GaN.” GUVB-T11GM-LA datasheet, Aug. 2018
[25] Genicom ,“UV-A Sensor, ” GUVA-T31GD datasheet, 2018
[26] Thorlabs, “GaP Photodiode,” FGAP71 datasheet, Apr. 2017
[27] 白世南,光電工程概論.ppt,建國科技大學電子工程系
[28] 劉博文,光電元件導論,全威圖書有限公司,臺北,2005
[29] S. O. Kasap, OPTOELECTRONICS AND PHOTOICS principles and Practices, Peason Education Interational, 2001.
[30] Muth, J.F, J.H. Lee, I.K. Shmagin, R.M. Kolbas, H.C. Casey, Jr.,B.P.Keller, U.K. Mishra, S.P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. vol. 71, issue 18, Nov. 1997.
[31] 曹永忠,Arduino雲 物聯網系統開發(入門篇),渥瑪數位有限公司,臺灣,2015
[32] 林君翰,「基於Arduino 之感測器量測資料擷取裝置」,國立中央大學土木工程學系碩士論文,桃園,2015
[33] 施侑廷,「整合網路影像傳輸及Arduino之迷你行動機器人的研發」,國立勤益科技大學機械工程系碩士論文,臺中,2016
[34] 羅皓尹,「MIT App Inventor 在Android 行動裝置之研究 — 設計財產資料庫查詢」,國立交通大學理學院科技與數位學習學程碩士論文,新竹,2015
[35] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, “Thermal Annealing Effects on P-Type Mg-Doped GaN Films,” Japanese Journal of Applied Physics, vol. 31, pp. L139-L142, 1992.
[36] 蕭宏,半導體製程技術導論-第三版,全華圖書有限公司,台北,2014
[37] SUSS MicroTec , “Mask Aligner, ”SUSS_MA_BA8_Gen3_Original.
pdf
[38] 施敏,半導體元件物理與製作技術-第三版,國立交通大學出版社,新竹,2013
[39] 廖彥超,「有無電流阻擋層與不同透明導電層材料與厚度對氮化鎵發光二極體電流分佈的影響」,國立台灣科技大學電子工程所碩士學位論文,臺北,2011
[40] 王婉瑄.「以奈米壓印微影技術研製氮化鎵分佈回饋式雷射」,國立台灣科技大學電子工程所碩士論文,臺北,2015