研究生: |
李世杰 Shih-Chieh Lee |
---|---|
論文名稱: |
改進多視角視訊編解碼架構下之分散式視訊編碼器效能 On Improving Distributed Video Codec Performance Under Multiview Video Codec Framework |
指導教授: |
陳建中
Jiann-Jone Chen |
口試委員: |
杭學鳴
Hsueh-Ming Hang 陳永昌 Yung-Chang Chen 黃文吉 Wen-Jyi Hwang 楊士萱 Shih-Hsuan Yang 蘇柏齊 Po-Chyi Su 蘇順豐 Shun-Feng Su |
學位類別: |
博士 Doctor |
系所名稱: |
電資學院 - 電機工程系 Department of Electrical Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 119 |
中文關鍵詞: | 分散式視訊編碼 、多描述編碼 、多視角視訊編碼 |
外文關鍵詞: | multiple description coding, central decoder control |
相關次數: | 點閱:480 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文探討如何應用分散式視訊編碼方法(Distributed Video Coding, DVC)針對視訊影像間的關聯性編碼,並應用通道編碼將編碼運算複雜度有效的轉移到解碼端,同時在解碼端透過中央聯合解碼重建原始視訊影像;本論文所提出的編碼控制方法經由模擬實際的通道傳輸環境來驗證結果。全文含二個子研究項目,分別討論分散式編碼器在單一及多視角視訊編碼上的應用: (1)結合DVC和多描述編碼系統(Multiple Description Coding, MDC),在模擬真實的傳輸環境下降低雜訊的干擾,並且利用集中式解碼器選擇較佳的影像輸出; (2)針對DVC應用在多視角視訊編碼(Multiview Video Coding, MVC)的架構下,提出一個能提升輔助資訊精確度的處理方法,從而改善重建影像品質。
因DVC可以將編碼運算的複雜度轉移到解碼器,故可廣泛應用在需要佈署低複雜度之視訊擷取裝置系統:如有線或無線的感知監測網路。本論文第一部份討論如何改善DVC的效能和其相關的應用,並依據訊號的特性討論DVC系統中組成的功能單元對於輔助資訊(Side information SI)和重建影像品質的影響。將DVC應用於MDC的架構簡稱為MD-DVC,我們提出改善MDC之中央解碼器(Central Decoder)最佳影像輸出選擇機制以降低雜訊在影像傳輸中的干擾。
第二部份討論分散式編碼器在多視角影像傳輸架構下的應用,稱為多視角分散式視訊編碼(Multiview Distributed Video Coding, MV-DVC),控制目的是減少龐大資料的傳輸。在MV-DVC解碼端,我們提出結合影像區塊分類和動量估測權重分配(Categorized blOck Matching Prediction with fidelity wEights, COMPETE)以重建出可信度較高的輔助資訊(Confidence SI)。本文所提出的COMPETE方法充分運用週圍相鄰影像的關聯性,對等待重建的區塊進行分類,並且運用基於尺度不變轉換、區塊比對之動量估測和權重分配的法則,在不增加計算複雜度的條件下,有效提高SI Confidence,並改善了重建畫面的品質。在解碼端,根據轉換域係數分佈的特性,我們設計了一個適用於渦輪解碼器的優先權控制演算法,在模擬結果證實此法可減少用於修正的同位檢查位元的傳輸量,並降低渦輪解碼器迭代解碼的時間。
In a distributed video coder (DVC), it encodes multiple correlated images and utilizes error correction code to shift the encoding complexity to the decoder, in which a central decoder performs joint decoding to reconstruct the video frames. For the first part of this thesis, how to improve the DVC performances and its extended applications were investigated. By shifting the encoding complexity to the decoder, the DVC can be utilized in wireless/wired sensors or surveillance networks that demands lower-complexity capturing devices. The signal processing targets of all the DVC function units were investigated to justify the performance of SI and Wyner-Ziv frame reconstruction. The multiple description coding (MDC), that decomposes one single media into several descriptions and transmits them through different channels, can combat noises. Each MDC description contributes to improve the reconstructed media quality when decoded. For robust transmission, the DVC is integrated with a multiple description coder (MDC), abbreviated as MD-DVC. For the MD-DVC, we proposed to improve the central decoder to combat transmission errors. We also proposed to improve the side information (SI) confidence by a Categorized blOck Matching Prediciton with fidEliTy wEight (COMPETE) method, by which better DVC reconstructed images can be obtained. In addition, the video signal properties were utilized to improve the rate control procedure, which would reduce the number of requested parity bits. The MD-DVC control methods help to provide a stable codec platform for mobile encoders. At the side encoder, a DVC-based adaptive differential pulse code modulation (DPCM) method was proposed to utilize inter-frame correlation to enhance rate-distortion performances. For the MD-DVC central decoding, intra- and inter-description correlations were exploited and utilized to dynamically select the best reconstructed frames among all the descriptions, instead of selecting just one description or all key-frames from two descriptions. For the thesis second part, the multi-view video codec (MVC) embedded with the DVC was investigated. In the COMPETE, blocks were categorized for different coding procedures and prediction by fidelity weights was proposed to yield high confidence SI. The transform coefficient properties, i.e., DCs and ACs, were exploited to design the priority rate control for the turbo coder, such that the DVC decoding can be carried out with the minimum number of parity bits. Experiments justified that the proposed COMPETE with the rate control can be carried out with lower time complexity, while yielding better reconstructed video quality.
[1] B. Girod, A. M. Aaron and S. D. Rebollo-Monedero, “Distributed video coding,” in Proc. IEEE, vol. 93, pp. 71-83, Jan. 2005.
[2] Z.-X. Ziong, A. D. Liveris and S. Cheng, “Distributed source coding for sensor networks,”in IEEE Signal Processing Magazine, vol. 21, issue 5, pp. 80-94, Sep. 2004.
[3] D. Slepian and J.Wokf, “Noiseless coding of correlated information sources,” in IEEE Trans. Info. Theory, vol. 19, pp. 471-480, Jul. 1973.
[4] A. Wyner and J. Ziv, “The rate-distortion function for source coding with side information at the decoder,” in IEEE Trans. Info. Theory, vol. 22, no. 1, pp. 1-10, 1976.
[5] R. Zamir, S. Shamai and U. Erez, “Nested linear/lattice codes for structured multiterminal binning,” in IEEE Trans. Info. Theory, vol. 48, no. 6, pp. 1250-1276, Jun.
2002.
[6] J. Ascenso, C. Brites and F. Pereira, “Improving frame interpolation with spatial motion smoothing for pixel domain distributed video coding,” in EURASIP Conf. Speech and Image Processing, July. 2005.
[7] C. Brites, J. Ascenso, F. Pereira, “Improving transform domain Wyner-Ziv video coding performance,” in IEEE Conf. Acoustics, Speech and Signal Processing, vol. 48, no. 6, pp. 1250-1276, Jun. 2002.
[8] X. Artigas and L. Torres, “Iterative generation of motion compensated side information for distributed video coding” in IEEE Conf. Image Processing, Sep. 2005.
[9] Information technology-coding of audio-visual objects-part 10: advanced video coding, ISO/IEC Std 14496-10, 2004.
[10] A. Aaron, S. Rane, R. Zhang and B. Girod, “Wyner-Ziv coding for video: Applications to compression and error resilience,” in Proc. IEEE Data Compression Conf., Mar. 2003.
[11] J. A. Park, D. Y. Suh, and G. H. Park, “Distriuted video coding with multiple side information sets,” in IEICE Trans. Info. Syst. vol. E93-D, no. 3, Mar. 2010.
[12] B. Macchiavello et al., “Side-information generation for temporally and spatially scalable Wyner-Ziv codecs,” in EURASIP J. Image Video Processing, 2009.
[13] X. Artigas et al., “The DISCOVER codec: architecture, techniques and evaluation,” in Picture Coding Symposium, 2007.
[14] I. Tosic,and P. Frossard, “Wyner-Ziv coding of multi-view omnidirectional images with overcomplete decompositions,” in Proc. IEEE ICIP, Sep. 2007.
[15] Y. Wang, A. Reibman and S. Lin, “Multiple description coding for video delivery,” in Proc. IEEE, vol. 93, no. 1, Jan. 2005.
[16] Y. Wang and Y.-Q. Zhang, Video Processing & Commun., Prentice Hall, 2002.
[17] J. K. Wolf, et al., “Source coding for multiple description,” in Bell Syst. Tech. J., vol. 59, pp. 1417-1426, Oct. 1980.
[18] L. Ozarow, “On a source coding problem with two channels and three receivers,” Bell Syst. Tech. J., vol. 59, pp. 1909-1921, Dec. 1980.
[19] A. A. El-Gamal and T. M. Cover, “Achievable rates for multiple descriptions,” in IEEE Trans. Info. Theory, vol. 28, pp. 851-857, Nov. 1982.
[20] J. Apostolopoulos, “Reliable video communication over lossy packet networks using multiple state encoding and path diversity,” in Proc. Visual Communications Image Processing, pp. 392-409, 2001.
[21] N. Franchi et al., “Multiple video coding for scalable and robust transmission over IP,” in Packet Video Conf., 2003.
[22] I. V. Bajic and J. W. Woods, “Domain-based multiple description coding of images and video,” in IEEE Trans. Image Process., vol. 12, pp. 1211-1225, Oct. 2003.
[23] S. Shirani, M. Gallant and F. Kossentini, “Multiple decription image coding using pre- and post-processing," in Proc. Int. TCC, pp. 35-39, Apr. 2001.
[24] M. Orchard, Y. Wang, V. Vaishampayan and A. Reibman, “Redundancy rate distortion analysis of multiple description image coding using pair wise correlation transforms," in Proc. IEEE ICIP, vol. 1, pp. 608-611, Oct. 1997.
[25] N. S. Jayant, “Subsampling of a DPCM speech channel to provide two selfcontained half-rate channels,” in Bell Syst. Tech. J., vol. 60, no. 4, pp. 501-509, Apr. 1981.
[26] V. A. Vaishampayan, “Design ofmultiple description scalar quantizer,” IEEE Trans. Info. Theory, vol. 39, pp. 821-834, May 1993.
[27] N. Zhang et al., “Efficient multiple-description image coding using directional lifting-based transform,” in IEEE Trans. Circuits Syst. Video Techn., vol. 18, no. 5, pp. 646-656, May. 2008.
[28] C. W. Hsiao and W. J. Tsai, “Hybrid multiple description coding based on H.264,”in IEEE Trans. Circuits Syst. Video Techn., vol. 20, pp. 76-87, Jan. 2010.
[29] Y. Fan et al., “A novel multiple description video codec based on Slepian-Wolf coding,” in Proc. IEEE Data Compression Conference, Mar 2008.
[30] M. Wu, A. Vetro and C.-W. Chen, “Multiple description image coding with distributed source coding and side information,” Mitsubishi Electric Research Laboratories, Inc., 2004
[31] O. Crave et al., “Robust video coding based on multiple description scalar quantization with side information,” in IEEE Trans. Circuits Syst. Video Techn., vol. 20, no.6, June 2010.
[32] O. Crave et al., “Distributed temporal multiple description coding for robust video transmission,” in EURASIP J. Wireless Commun. Networking, vol. 2008, June 2007.
[33] A.Wang et al., “A two-description distributed video coding,” Information Assurance and Security, vol. 1, pp. 127-130, Aug 2009.
[34] A. Aaron et al., “Transform-domain Wyner-Ziv codec for video,” in Proc. Visual Commun. Image Processing, Jan. 2004.
[35] S. Yuan and K.-B. Yu, “Zonal sampling and bit allocation of HT coefficients in image data compression,” in IEEE Trans. Commun., vol. COM-34, no. 12, pp. 1246-1251, Dec. 1986.
[36] K. Sayood, in Introduction to data compression, Morgan Kaufmann, 2000.
[37] A. S. Barbulescu and S. S. Pietrobon, “Rate compatible turbo codes,” in Electronic Letter, vol. 31, pp.535-536, Mar. 1995.
[38] D. N. Rowitch and L. B. Milstein, “On the performance of hybrid FEC/ARQ system using rate compatible punctured turbo(RCPT) codes,” in IEEE Trans. Commun., vol.48, pp.948-959, Jun. 2000.
[39] G. Berrou, A. Glavieuc and P. Thitmajshima, “Near Shannon limit error-correcting coding: turbo codes,” in Int. Conf. Commun., Geneva, Seitzerland, pp. 1064-1070,May 1993.
[40] E. K. Hall and S. G. Wilson, “Design and analysis of turbo codes on rayleigh fading channels,” in IEEE J. Select. Areas. Commun., vol.16, pp. 160-174, Feb. 1998.
[41] P. Chen and J. W. Woods, “Bidirectional MC-EZBC with lifting implementation,” in IEEE Trans. Circuits Syst. Video Techn., vol. 14, Oct. 2004.
[42] J. A. Erfanian and S. Pasupathy, “Low-complexity parallel-structure symbol by symbol detection for ISI channels,” in Proc. IEEE Pacific Rim Conf. Commun. Computers and Signal Processing, pp. 350-353, June, 1989.
[43] A. Aaron, R. Zhang and B. Girod, “Wyner-Ziv coding of motion video,” (Invited Paper) in Proc. Asilomar Conf. Signals Systems, Nov. 2002.
[44] C. Brites, J. Ascenso, F. Pereira, “Studying temporal correlation noise modeling for pixel based wyner-ziv video coding,” in IEEE Int. Conf. Image Processing, Oct. 2006.
[45] Y. Li and K. Sayood, “Lossless video sequence compression using adaptive prediction,” in IEEE Trans. Image Processing, vol. 16, no. 4, Apr. 2007.
[46] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara„ “A soft-input soft-output maximum a posteriori(MAP) module to decode parallel and serial concatenated codes,” in TDA progress report, Nov. 15, 1996.
[47] L. R. Bahl, J. Cocke, F. Jelinek, and J. Racic, “Optimal decoding of linear codes for minimizing symbol error rate,” in IEEE Trans. Inform. Theory, vol. IT-20, pp. 284-287, 1974.
[48] J. W. Woods and P. S. Chen. “Improved MC-EZBC with quarter-pixel motion vectors,” ISO/IEC/JTCI SC29/WG11 DOC. no. m8366, Fairfax, May 2002.
[49] A. M. Huang and T. Nguyen, “Correlation-based motion vector processing with adaptive interpolation scheme for motion-compensated frame interpolation,” in IEEE Trans. Image Processing, vol. 18, no. 4, pp. 740-752, 2009.
[50] J. R. Ohm, “Complexity and delay analysis of MCTF interframe wavelet structures,”ISO/IEC JTC1/SC29/WG11 M8520,. Klagenfurt, Jul. 2002.
[51] Z. M. Belkoura and T. Sikora, “Towards rate-decoder complexity optimisation in Turbo-coder based distributed video coding,” in PCS, Apr. 2006.
[52] ‘Free Viewpoint Television (FTV),” http://www.tanimoto.nuee.nagoyau.
ac.jp/study/FTV
[53] A. Vetro, T. Wiegand and G. J. Sullivan, “Overview of the stereo and multiview video coding extensions of the H.264/MPEG-4 AVC Standard,” in Proc. IEEE, vol. 99, issue 4, pp. 626-642, Apr. 2011.
[54] A. Kubota, A. Smolic, M. Magnor, M. Tanimoto, T.S. Chen and C.H. Zhang, “Multiview imaging and 3DTV,” in IEEE Signal Processing Magazine, vol. 24, issue 6, 2007.
[55] H. Wei, G. Cheung, X. Li and O. Au, “Depth Map Super-Resolution Using Synthesized View Matching for Depth-Image-Based Rendering ,” in IEEE Int. Conf. ICMEW, pp. 605-610, 2012
[56] M. Xi,L.-H. Wang, Q.-Q Yang, D.-X. Li and M. Zhang, “Multiview virtual image synthesis for auto-stereoscopic display based on two views ,” in ICSAI, pp. 1966-1970, 2012.
[57] F. Shao, G. Jiang, M. Yu, K. Chen and Y.-S. Ho, “Asymmetric Coding of Multi-View Video Plus Depth Based 3-D Video for View Rendering ,” in IEEE Trans. Multimedia, vol. 14, issue 1, pp. 157-167, 2012.
[58] Y.-C. Fan, Y.-T. Kung and B.-L. Lin, “Three-Dimensional Auto-Stereoscopic Image Recording, Mapping and Synthesis System for Multiview 3D Display ,” in IEEE Trans. Magnetics, vol. 47, issue 3, pp. 683-686, 2011.
[59] A. Vetro, W. Matusik, H. Pfister, and J. Xin, “Coding approaches for end-to-end 3D TV systems,” in Proc. PCS, pp. 319-324, Dec. 2004.
[60] A. Smolic and P. Kauff, “Interactive 3-D video representation and coding technologies,”in Proc. IEEE, vol. 93, no. 1, pp. 98-110, 2005.
[61] J. Konrad and M. Halle, “3-D displays and signal processing-An answer to 3-D Ills?,” in IEEE Signal Process Magazine, vol. 24, no. 6, pp. 11-97, Nov. 2007.
[62] Y. Zhang, S. Kwong, G.-Y. Jiang, X.Wang andM. Yu, “Statistical Early Termination Model for Fast Mode Decision and Reference Frame Selection in Multiview Video Coding,” in IEEE Trans. Broadcasting, vol. 58, issue. 1, pp. 10-23, Nov. 2012.
[63] G. Van Wallendael, S. Van Leuven, J. De Cock, F. Bruls and R. Van de Walle, “3D video compression based on high efficiency video coding,” in IEEE Trans. Consumer Electronics, vol. 58, issue. 1, pp. 137-145, Nov. 2012.
[64] Y.-C. Fan, Y.-T. Kung and B.-L. Lin, “Three-Dimensional Depth Map Motion Estimation and Compensation for 3D Video Compression ,” in IEEE Trans. Magnetics, vol. 47, issue 3, pp. 691-695, 2011.
[65] “Joint draft 9.0 on multi-view video coding,” JVT-AB204, Hannover, Germany, Jul. 2008.
[66] A. Smolic, K. Mueller, N. Stefanoski, J. Ostermann, A. Gotchev, G.B. Akar, G.A. Triantafyllidis and A.Koz, “Coding Algorithms for 3DTV-A Survey,” in IEEE Trans. Circuits Syst. Video Techn. vol. 7, issue 11, pp. 1606-1621, Nov. 2007.
[67] M. Flierl and B. Girod, “Coding of multi-view image sequences with video sensors,”in Proc. IEEE ICIP, pp. 609-612, Oct. 2006.
[68] X. Guo, Y. Lu, F. Wu, W. Gao and S. Li, “Distributed multiview video coding,” in Proc. SPIE Visual Communications and Image Processing, vol. 6077, pp. 290-297, Jan. 2006.
[69] Information technology-coding of audio-visual objects-part 10: advanced video coding, ISO/IEC Std 14496-10, 2004.
[70] C. Yeo and K. Ramchandran, “Robust distributed multi-view video compression for wireless camera networks,” in IEEE Trans. Image. Processing, vol. 19, no. 4, pp. 995-1008, Apr. 2010.
[71] M. Ouaret, F. Dufaux and T. Ebrahimi, “Iterative multiview side information for enhanced reconstruction in distributed video coding,” in EURASIP J. Image Video Process, pp. 1-17, Jan. 2009.
[72] X. Artigas, E. Angeli and L. Torres, “Side information generation for multiview distributed video coding using a fusion approach,” in Proc. Nordic Signal Processing Symposium, pp. 250-253, Jun. 2007.
[73] M. Ouaret, F. Dufaux and T. Ebrahimi, “Fusion-based multiview distributed video coding,” in Proc. ACM Video Surveillance and Sensor Networks, pp. 139-144, Oct. 2006.
[74] T. Maugey, W. Miled, M. Cagnazzo and B. Pesquet-Popescu, “Fusion schemes for multiview distributed video coding,” EUSIPCO , pp. 559-563, Aug. 2009.
[75] F. Dufaux, “Support vector machine based fusion for multi-view distributed video coding,” in DSP, pp. 1-7, Aug. 2011.
[76] S. Shimizu, Y. Tonomura, H. Kimata and Y. Ohtani, “Improved view interpolation for side information in multiview distributed video coding,” ICDSC, pp. 1-8, Oct. 2009.
[77] S. Shimizu, and H. Kimata, “View synthesis motion estimation for multiview distributed video coding,” in EUSIPCO, pp. 2057-2061, Aug. 2010.
[78] M. Makar et al, “Quality-controlled view interpolation for multiview video,” in Int. Conf. Image Processing, pp. 1805-1808, Sep. 2011.
[79] F. Pereira et al, “Studying the GOP size impact on the performance of a feedback channel-based Wyner-Ziv video codec,” in IEEE Pacific Rim Symposium on Image Video and Technology, Dec. 2007.
[80] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International Journal of Computer Vision, vol. 60, no. 2, pp. 91-110, Nov. 2004.
[81] R. C. Bolles and M. A. Fischler, “Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography,” in Communication ACM, vol. 24, no. 6, pp. 381-395, Jun. 1981.
[82] P. Marquez-Neila, J. Garcia Miro, J. M. Buenaposada and L. Baumela, “Improving RANSAC for fast landmark recognition,” in Proc. Computer Vision and Pattern Recognition Workshops, pp. 1-8, Jul. 2008.
[83] A. Aaron, R. Zhang, and B. Girod, “Wyner-Ziv coding of motion video,” in Proc. Asilomar Conference on Signals, Systems and Computers, vol. 1, pp.240-244, Nov. 2002.
[84] R. Hartley and A. Zisserman, “Multiple view geometry in computer vision,” 2nd Ed., Cambridge University Press, ISBN: 0-521-54051-8, 2004.
[85] J. Ascenso, C. Brites, and F. Pereira, “Content adaptive Wyner-Ziv video coding driven by motion activity,” in Proc. IEEE ICIP, pp. 605-608, Oct. 2006.
[86] X. Artigas, E. Angeli, and L. Torres, “A Comparison of different side information generation methods for multi-view distributed video coding,” in Proc. SIGMAP, Barcelona, Spain, pp. 450-455, Jul. 2007.
[87] C. Brites and F. Pereira, “Correlation noise modeling for efficient pixel and transform domain Wyner-Ziv video coding,” in IEEE Trans. Circuits Syst. Video Techn., vol. 18, no. 9, pp. 1177-1190, Sep. 2008.
[88] D. Kubasov, K. Lajnef, and C. Guillemot, “A hybrid encoder/decoder rate control for Wyner-Ziv video coding with a feedback channel,” in IEEE Workshop on MMSP, pp. 251-254, Oct. 2007.
[89] D. Kubasov, J. Nayak and C. Guillemot, “Optimal reconstruction inWyner-Ziv video coding with multiple side information,” in Int. W. Multimedia Signal Processing, Oct. 2007.
[90] M. Ouaret, F. Dufaux and T. Ebrahimi, “Mulitiview distributed video coding with encoder driven fusion,” in EUSIPCO, Sep. 2007.
[91] Call for proposals on multi-view video coding, ISO/IEC JTC1/SC29/WG11, N7327, Jul. 2005.
[92] J.-J. Chen et al, “A multiple description video codec with adaptive residual distributed coding,” in IEEE Trans. Circuits Syst. Video Techn., vol. 22, no. 5, pp. 754-768, May. 2012.
[93] J. L. Martinez et al, “Feedback free DVC architecture using machine learning,” in Proc. IEEE ICIP, pp. 1140-1143, Oct. 2008.
[94] M. Badem, W. A. C. Fernando, and A. M. Kondoz, “Unidirectional distributed video coding using dynamic parity allocation and improved reconstruction,” in Int. Conf. Info. Automation for Sustainability (ICIAFs), 2010.
[95] Y. Deng, Y. Liu, Q. Dai, Z. Zhang and Y. Wang, “Noisy Depth Maps Fusion for Multiview Stereo Via Matrix Completion ,” in IEEE Signal Processing, vol. 6, pp. 566-582, 2012.
[96] E. Martinian, A. Behrens, J. Xin, and A. Vetro, “View synthesis for multiview video compression,” in Proc. IEEE PCS, 2006.
[97] S. Yea and A. Vetro, “View synthesis prediction for multiview video coding,” in Image Commun., vol. 24, no. 1-2, pp. 89-110, Jan. 2009.
[98] M. Kitahara, H. Kimata, S. Shimizu, K. Kamikura, Y. Yashima, K. Yamamoto, T. Yendo, T. Fujii, and M. Tanimoto, “Multi-view video coding using view interpolation and reference picture selection,” in Proc. IEEE Int. Conf. Multimedia Expo., pp. 97-100, Jul. 2006.