研究生: |
張品妤 Pin-yu Zhang |
---|---|
論文名稱: |
以層層自組裝及GelMA水凝膠製備外泌體裝載的PEDOT:PSS複合膜於治療性心臟貼片應用 Employing Layer-by-Layer Assembly and GelMA Hydrogel in the Preparation of Exosome-loaded PEDOT:PSS Composite Films for Therapeutic Cardiac Patches Applications |
指導教授: |
蕭育生
Yu-Sheng Hsiao |
口試委員: |
游佳欣
Jia-Shing Yu 羅世強 Shyh-Chyang Luo |
學位類別: |
碩士 Master |
系所名稱: |
工程學院 - 材料科學與工程系 Department of Materials Science and Engineering |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 110 |
中文關鍵詞: | 導電生物水凝膠 、聚二氧乙基噻吩:聚苯乙烯磺酸 、聚赖氨酸 、聚苯乙烯磺酸 、甲基丙烯酸酐化明膠 、胞外泌體 、心肌修復水凝膠貼片 |
外文關鍵詞: | Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), nonionic surfactant (NIS), polyvinyl alcohol (PVA), layer-by-layer (LbL), exosome, cardiac patch, poly-L-lysine (PLL), polystyrene sulfonate (PSS), gelatin methacrylate (GelMA) |
相關次數: | 點閱:653 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
心血管疾病是全球的主要致死原因之一,目前的醫療管理在治療心臟衰竭方面效果有限,在心肌梗塞(MI)的情況下,大量心肌細胞在短期內因缺血而死亡,對心臟功能構成重大威脅,因此,開發具有高生物相容性、自修復特性的心臟貼片以誘導心肌細胞再生顯得尤為重要。
我們的研究證明,將GOPS、DMSO及非離子界面活性劑FS3100融入聚二氧乙基噻吩:聚苯乙烯磺酸(poly(3,4-ethylenedioxythiophene) polystyrene sulfonate, PEDOT:PSS)薄膜中,賦予了心臟貼片卓越的柔韌性、可拉伸性、自修復性能及優異的導電性於生物電子醫學的應用;發現製程乾燥速度可明顯調控表面電位;此外,聚乙烯醇(PVA)水凝膠的外部施壓證實了對PEDOT:PSS複合膜的加速修復能力。
另外,我們對永生化骨髓幹細胞(IBMSC)的外泌體(exosomes)進行了尺寸排阻層析法(size exclusion chromatography, SEC)純化,並應用IBMSC來源的exosomes來證實其有助於改善缺血性損傷後的心臟組織。我們進一步探討了逐層(LbL)技術,通過exosomes與聚赖氨酸(PLL)/聚苯乙烯磺酸(PSS)的靜電吸附,以及甲基丙烯酸明膠(gelatin methacrylate, GelMA)的封裝來控制外泌體的裝載及電控釋放,GelMA水凝膠有助於減緩外泌體的釋放速率,提高外泌體的保留時間,實現持續的治療效果,為由MI引起的部分組織壞死提供了潛在的新穎修復方案,並展示了在治療心臟缺血性損傷和改善心肌纖維化方面的應用前景。
Cardiovascular diseases are among the leading causes of death globally, and current medical management for treating heart failure is often limited in efficacy. In cases of myocardial infarction (MI), large numbers of cardiomyocytes die within a short period due to ischemia, posing a significant threat to heart function. Therefore, developing highly biocompatible, self-healing cardiac patches to induce cardiomyocyte regeneration is of paramount importance.
Our research demonstrates that incorporating GOPS, DMSO, and the non-ionic surfactant FS3100 into poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) films endows the cardiac patches with exceptional flexibility, stretchability, self-healing properties, and outstanding conductivity. Additionally, polyvinyl alcohol (PVA) hydrogels have been shown to confirm the high stability and accelerated repair capabilities of the PEDOT:PSS composite films.
We purified exosomes derived from immortalized bone marrow stem cells (IBMSCs) using size exclusion chromatography (SEC). Research indicates that IBMSC-derived exosomes contribute to neovascularization and can inhibit inflammatory responses, thereby improving ischemic injury-affected cardiac tissue. We further explored the layer-by-layer (LbL) technique, employing the electrostatic adsorption of exosomes with poly-L-lysine (PLL)/polystyrene sulfonate (PSS) and encapsulation with gelatin methacrylate (GelMA) to control the release of exosomes. This approach helps to slow the release rate of exosomes, extend their retention time, and achieve sustained therapeutic effects.
These innovations provide a potentially novel repair strategy for tissue necrosis caused by MI and demonstrate promising applications in treating ischemic cardiac injuries and improving myocardial fibrosis.
1. Nabel, E.G. and E. Braunwald, A Tale of Coronary Artery Disease and Myocardial Infarction. New England Journal of Medicine, 2012. 366(1): p. 54-63.
2. Lee, C.H., et al., Trends in the Incidence and Management of Acute Myocardial Infarction From 1999 to 2008: Get With the Guidelines Performance Measures in Taiwan. Journal of the American Heart Association. 3(4): p. e001066.
3. Boersma, E., et al., Acute myocardial infarction. The Lancet, 2003. 361(9360): p. 847-858.
4. Hu, P., et al., Mesenchymal stromal cells-exosomes: a promising cell-free therapeutic tool for wound healing and cutaneous regeneration. Burns & Trauma, 2019. 7.
5. Gentile, P., et al., Layer-by-layer assembly for biomedical applications in the last decade. Nanotechnology, 2015. 26(42): p. 422001.
6. Hammond, P.T., Building biomedical materials layer-by-layer. Materials Today, 2012. 15(5): p. 196-206.
7. Xie, Y., et al., Hydrogels for Exosome Delivery in Biomedical Applications. Gels, 2022. 8(6): p. 328.
8. Yue, K., et al., Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials, 2015. 73: p. 254-271.
9. Familtseva, A., N. Jeremic, and S.C. Tyagi, Exosomes: cell-created drug delivery systems. Molecular and Cellular Biochemistry, 2019. 459(1): p. 1-6.
10. Zaborowski, M.P., et al., Extracellular Vesicles: Composition, Biological Relevance, and Methods of Study. BioScience, 2015. 65(8): p. 783-797.
11. Pan, B.-T., et al., Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. The Journal of cell biology, 1985. 101(3): p. 942-948.
12. Fonseka, P., A.L. Marzan, and S. Mathivanan, Introduction to the community of extracellular vesicles. New Frontiers: Extracellular Vesicles, 2021: p. 3-18.
13. Chopra, N., et al., Biophysical Characterization and Drug Delivery Potential of Exosomes from Human Wharton’s Jelly-Derived Mesenchymal Stem Cells. ACS Omega, 2019. 4.
14. Reddy, K., A. Khaliq, and R.J. Henning, Recent advances in the diagnosis and treatment of acute myocardial infarction. World journal of cardiology, 2015. 7(5): p. 243.
15. Toyoda, Y., T.S. Guy, and A. Kashem, Present status and future perspectives of heart transplantation. Circulation Journal, 2013. 77(5): p. 1097-1110.
16. Nguyen-Truong, M., Y.V. Li, and Z. Wang, Mechanical Considerations of Electrospun Scaffolds for Myocardial Tissue and Regenerative Engineering. Bioengineering, 2020. 7(4): p. 122.
17. Streeter, B.W. and M.E. Davis, Therapeutic cardiac patches for repairing the myocardium. Cell Biology and Translational Medicine, Volume 5: Stem Cells: Translational Science to Therapy, 2019: p. 1-24.
18. McMahan, S., et al., Current advances in biodegradable synthetic polymer based cardiac patches. Journal of Biomedical Materials Research Part A, 2020. 108(4): p. 972-983.
19. Kc, P., Y. Hong, and G. Zhang, Cardiac tissue-derived extracellular matrix scaffolds for myocardial repair: advantages and challenges. Regenerative Biomaterials, 2019. 6(4): p. 185-199.
20. Cristallini, C., et al., Nanoengineering in Cardiac Regeneration: Looking Back and Going Forward. Nanomaterials, 2020. 10(8): p. 1587.
21. Sun, W., et al., The bioprinting roadmap. Biofabrication, 2020. 12(2): p. 022002.
22. Imashiro, C. and T. Shimizu, Fundamental Technologies and Recent Advances of Cell-Sheet-Based Tissue Engineering. International Journal of Molecular Sciences, 2021. 22(1): p. 425.
23. Li, M., et al., Recent fabrications and applications of cardiac patch in myocardial infarction treatment. VIEW, 2022. 3(2): p. 20200153.
24. Sharma, D., et al., Constructing biomimetic cardiac tissues: a review of scaffold materials for engineering cardiac patches. Emergent materials, 2019. 2: p. 181-191.
25. Parsa, H., K. Ronaldson, and G. Vunjak-Novakovic, Bioengineering methods for myocardial regeneration. Advanced drug delivery reviews, 2016. 96: p. 195-202.
26. Ye, H., et al., Polyester elastomers for soft tissue engineering. Chemical Society Reviews, 2018. 47(12): p. 4545-4580.
27. Bejleri, D. and M. Davis, Decellularized extracellular matrix materials for cardiac repair and regeneration. Adv Healthc Mater 8 (5): e1801217. 2019.
28. Mosadegh, B., et al., Current progress in 3D printing for cardiovascular tissue engineering. Biomedical Materials, 2015. 10(3): p. 034002.
29. Saludas, L., et al., Hydrogel based approaches for cardiac tissue engineering. International journal of pharmaceutics, 2017. 523(2): p. 454-475.
30. Takahashi, H. and T. Okano, Thermally-triggered fabrication of cell sheets for tissue engineering and regenerative medicine. Advanced drug delivery reviews, 2019. 138: p. 276-292.
31. Nezakati, T., et al., Conductive Polymers: Opportunities and Challenges in Biomedical Applications. Chemical Reviews, 2018. 118(14): p. 6766-6843.
32. Shirakawa, H., et al., Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene,(CH) x. Journal of the Chemical Society, Chemical Communications, 1977(16): p. 578-580.
33. Feast, W., Synthesis of conducting polymers. Handbook of conducting olymers, 1986. 1: p. 1.
34. Kundu, K. and D. Giri, Evolution of the electronic structure of cyclic polythiophene upon bipolaron doping. The Journal of chemical physics, 1996. 105(24): p. 11075-11080.
35. Guimard, N.K., N. Gomez, and C.E. Schmidt, Conducting polymers in biomedical engineering. Progress in polymer science, 2007. 32(8-9): p. 876-921.
36. Xu, S., et al., Conducting polymer-based flexible thermoelectric materials and devices: From mechanisms to applications. Progress in Materials Science, 2021. 121: p. 100840.
37. Li, Y., Conducting Polymers, in Organic Optoelectronic Materials, Y. Li, Editor. 2015, Springer International Publishing: Cham. p. 23-50.
38. Lee, M.-C. and G. Simkovich, Electrical conduction behavior of cementite, Fe3C. Metallurgical Transactions A, 1987. 18(3): p. 485-486.
39. Le, T.-H., Y. Kim, and H. Yoon, Electrical and Electrochemical Properties of Conducting Polymers. Polymers, 2017. 9(4): p. 150.
40. Roth, S. and H. Bleier, Solitons in polyacetylene. Advances in Physics, 1987. 36(4): p. 385-462.
41. Bredas, J.L. and G.B. Street, Polarons, bipolarons, and solitons in conducting polymers. Accounts of Chemical Research, 1985. 18(10): p. 309-315.
42. Namsheer, K. and C.S. Rout, Conducting polymers: A comprehensive review on recent advances in synthesis, properties and applications. RSC advances, 2021. 11(10): p. 5659-5697.
43. Gao, N., et al., Application of PEDOT:PSS and Its Composites in Electrochemical and Electronic Chemosensors. Chemosensors, 2021. 9(4): p. 79.
44. Donahue, M.J., et al., Tailoring PEDOT properties for applications in bioelectronics. Materials Science and Engineering: R: Reports, 2020. 140: p. 100546.
45. Spencer, A.R., et al., Electroconductive Gelatin Methacryloyl-PEDOT:PSS Composite Hydrogels: Design, Synthesis, and Properties. ACS biomaterials science & engineering, 2018. 4(5): p. 1558-1567.
46. Gueye, M.N., et al., Progress in understanding structure and transport properties of PEDOT-based materials: A critical review. Progress in Materials Science, 2020. 108: p. 100616.
47. Fan, Z. and J. Ouyang, Thermoelectric Properties of PEDOT:PSS. Advanced Electronic Materials, 2019. 5(11): p. 1800769.
48. Vosgueritchian, M., D.J. Lipomi, and Z. Bao, Highly conductive and transparent PEDOT: PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes. Advanced functional materials, 2012. 22(2): p. 421-428.
49. Lee, S.H., et al., Modified physico–chemical properties and supercapacitive performance via DMSO inducement to PEDOT: PSS active layer. Organic Electronics, 2014. 15(12): p. 3423-3430.
50. Lin, Y.-J., J.-Y. Lee, and S.-M. Chen, Changing electrical properties of PEDOT:PSS by incorporating with dimethyl sulfoxide. Chemical Physics Letters, 2016. 664: p. 213-218.
51. Mahato, S., et al., Near 5% DMSO is the best: A structural investigation of PEDOT: PSS thin films with strong emphasis on surface and interface for hybrid solar cell. Applied Surface Science, 2020. 499: p. 143967.
52. Maskos, U. and E.M. Southern, Oligonucleotide hybridisations on glass supports: a novel linker for oligonucleotide synthesis and hybridisation properties of oligonucleotides synthesised in situ. Nucleic acids research, 1992. 20(7): p. 1679-1684.
53. Håkansson, A., et al., Effect of (3-glycidyloxypropyl)trimethoxysilane (GOPS) on the electrical properties of PEDOT:PSS films. Journal of Polymer Science Part B: Polymer Physics, 2017. 55(10): p. 814-820.
54. Li, Y., et al., Tailoring the Self-Healing Properties of Conducting Polymer Films. Macromolecular Bioscience, 2020. 20: p. 2000146.
55. Tseng, H.-S., et al., Additive Blending Effects on PEDOT:PSS Composite Films for Wearable Organic Electrochemical Transistors. ACS Applied Materials & Interfaces, 2024. 16(11): p. 13384-13398.
56. Dupont, S.R., et al., Decohesion kinetics of PEDOT: PSS conducting polymer films. Advanced functional materials, 2014. 24(9): p. 1325-1332.
57. Zhang, S. and F. Cicoira, Water-Enabled Healing of Conducting Polymer Films. Advanced Materials, 2017. 29(40): p. 1703098.
58. Xin, X., et al., Effects of conductivity-enhancement reagents on self-healing properties of PEDOT:PSS films. Synthetic Metals, 2020. 268: p. 116503.
59. Valadi, H., et al., Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature cell biology, 2007. 9(6): p. 654-659.
60. Fortes Brollo, M.E., et al., Combined Magnetoliposome Formation and Drug Loading in One Step for Efficient Alternating Current-Magnetic Field Remote-Controlled Drug Release. ACS Applied Materials & Interfaces, 2020. 12(4): p. 4295-4307.
61. Domínguez-Arca, V., et al., Liposomes embedded in layer by layer constructs as simplistic extracellular vesicles transfer model. Materials Science and Engineering: C, 2021. 121: p. 111813.
62. Imai, T., et al., Macrophage-dependent clearance of systemically administered B16BL6-derived exosomes from the blood circulation in mice. Journal of Extracellular Vesicles, 2015. 4(1): p. 26238.
63. Gupta, D., et al., Quantification of extracellular vesicles in vitro and in vivo using sensitive bioluminescence imaging. Journal of Extracellular Vesicles, 2020. 9(1): p. 1800222.
64. Zhang, K., et al., Enhanced therapeutic effects of mesenchymal stem cell-derived exosomes with an injectable hydrogel for hindlimb ischemia treatment. ACS applied materials & interfaces, 2018. 10(36): p. 30081-30091.
65. Safari, B., et al., Exosome-loaded hydrogels: A new cell-free therapeutic approach for skin regeneration. European Journal of Pharmaceutics and Biopharmaceutics, 2022. 171: p. 50-59.
66. Ju, Y., et al., Extracellular vesicle-loaded hydrogels for tissue repair and regeneration. Materials Today Bio, 2023. 18: p. 100522.
67. Hsiao, Y.-S., et al., PEDOT:PSS-Based Bioelectrodes for Multifunctional Drug Release and Electric Cell-Substrate Impedance Sensing. ACS Applied Materials & Interfaces, 2023. 15(18): p. 21953-21964.
68. Aqrawe, Z., et al., The influence of macropores on PEDOT/PSS microelectrode coatings for neuronal recording and stimulation. Sensors and Actuators B: Chemical, 2019. 281: p. 549-560.
69. Li, P., et al., Progress in Exosome Isolation Techniques. Theranostics, 2017. 7(3): p. 789-804.
70. Tauro, B.J., et al., Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods, 2012. 56(2): p. 293-304.
71. Heinemann, M.L., et al., Benchtop isolation and characterization of functional exosomes by sequential filtration. Journal of Chromatography A, 2014. 1371: p. 125-135.
72. Zeringer, E., et al., Strategies for isolation of exosomes. Cold Spring Harb Protoc 2015: 319–323. 2015.
73. Lee, K., et al., Acoustic purification of extracellular microvesicles. ACS nano, 2015. 9(3): p. 2321-2327.
74. Jeyaram, A. and S.M. Jay, Preservation and Storage Stability of Extracellular Vesicles for Therapeutic Applications. Aaps j, 2017. 20(1): p. 1.
75. Zhang, Y., et al., Exosome: A Review of Its Classification, Isolation Techniques, Storage, Diagnostic and Targeted Therapy Applications. International Journal of Nanomedicine, 2020. 15(null): p. 6917-6934.
76. Soares Martins, T., et al., Exosome isolation from distinct biofluids using precipitation and column-based approaches. PloS one, 2018. 13(6): p. e0198820.
77. Dong, M., et al., Fbs-derived exosomes as a natural nano-scale carrier for icariin promote osteoblast proliferation. Frontiers in Bioengineering and Biotechnology, 2021. 9: p. 615920.
78. Fan, X.-L., et al., Mechanisms underlying the protective effects of mesenchymal stem cell-based therapy. Cellular and molecular life sciences, 2020. 77: p. 2771-2794.
79. Zhou, Y., et al., The immunomodulatory functions of mesenchymal stromal/stem cells mediated via paracrine activity. Journal of Clinical Medicine, 2019. 8(7): p. 1025.
80. Xunian, Z. and R. Kalluri, Biology and therapeutic potential of mesenchymal stem cell‐derived exosomes. Cancer Science, 2020. 111(9): p. 3100-3110.
81. Gowen, A., et al., Mesenchymal stem cell-derived extracellular vesicles: challenges in clinical applications. Frontiers in cell and developmental biology, 2020. 8: p. 149.
82. Ko, J., et al., Self-Healable Organic Electrochemical Transistor with High Transconductance, Fast Response, and Long-Term Stability. ACS Applied Materials & Interfaces, 2020. 12(30): p. 33979-33988.
83. Shirahama, H., et al., Precise tuning of facile one-pot gelatin methacryloyl (GelMA) synthesis. Scientific reports, 2016. 6(1): p. 31036.
84. Nguyen, V.B., Creating a Multi-Functional Liquid Assay Utilizing alamarBlue REDOX Indicator. 2012.
85. Grada, A., et al., Research techniques made simple: analysis of collective cell migration using the wound healing assay. Journal of Investigative Dermatology, 2017. 137(2): p. e11-e16.
86. Tsai, P.-T., et al., Large-area organic solar cells by accelerated blade coating. Organic Electronics, 2015. 22: p. 166-172.
87. Kulkarni, N.S., et al., Development of gelatin methacrylate (GelMa) hydrogels for versatile intracavitary applications. Biomaterials Science, 2022. 10(16): p. 4492-4507.