研究生: |
鄭鈞燦 Chun-Tsang Cheng |
---|---|
論文名稱: |
鈣鎂鋁矽酸鹽(CMAS)侵蝕下引發熱障塗層系統之界面脫層分析 Iterfacial delamination of thermal barrier coatings induced by CMAS(calcium-magnesium-alumino-silicates)attack) |
指導教授: |
趙振綱
Ching-Kong Chao |
口試委員: |
郭俞麟
Yu-Lin, Joseph, Kuo 張瑞慶 Rwei-Ching Chang |
學位類別: |
碩士 Master |
系所名稱: |
工程學院 - 機械工程系 Department of Mechanical Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 108 |
中文關鍵詞: | 熱障塗層 、鈣鎂鋁矽酸鹽(CMAS) 、界面脫層 、膠合元素 |
外文關鍵詞: | Thermal barrier coatings (TBCs), CMAS, cohesive element, interfacial delamination |
相關次數: | 點閱:407 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
[1] Clarke, D. R., Oechsner, M., & Padture, N. P. (2012). Thermal-barrier coatings for more efficient gas-turbine engines. MRS bulletin, 37(10), 891-898. [2] Vasireddi, R., & Mahapatra, D. R. (2018). Micro-crack pinning and interfacial fracture in mixed metal oxide reinforced epoxy nanocomposite. Journal of Materials Engineering and Performance, 27(11), 5938-5946.
[3] Rabiei, A. G. E. A., & Evans, A. G. (2000). Failure mechanisms associated with the thermally grown oxide in plasma-sprayed thermal barrier coatings. Acta materialia, 48(15), 3963-3976.
[4] Stern, K. H. (Ed.). (1996). Metallurgical and ceramic protective coatings. Springer Science & Business Media.
[5] Strangman, T. E. (1985). Thermal barrier coatings for turbine airfoils. Thin Solid Films, 127(1-2), 93-106.
[6] Bernard, B., Quet, A., Bianchi, L., Joulia, A., Malié, A., Schick, V., & Rémy, B. (2017). Thermal insulation properties of YSZ coatings: suspension plasma spraying (SPS) versus electron beam physical vapor deposition (EB-PVD) and atmospheric plasma spraying (APS). Surface and Coatings Technology, 318, 122-128.
[7] Kumar, V., & Balasubramanian, K. (2016). Progress update on failure mechanisms of advanced thermal barrier coatings: A review. Progress in Organic Coatings, 90, 54-82.
[8] The ash that shut down Europe, Peter Mechnich, DLR MAGEZINE, p.134-134.
[9] 郭巍 , 马壮 , 刘玲 , 朱时珍 , & 李星 . (2017). 航空发动机用热障涂层的
CMAS 侵蚀及防护 . 现代技术陶瓷 , 38(3), 159-174.
[10] Levi, C. G., Hutchinson, J. W., Vidal-Sétif, M. H., & Johnson, C. A. (2012).
Environmental degradation of thermal-barrier coatings by molten deposits. MRS
Bull, 37(10), 932-941.
[11] Giordano, D., & Dingwell, D. B. (2003). The kinetic fragility of natural silicate
melts. Journal of Physics: Condensed Matter, 15(11), S945.
[12] Krämer, S., Faulhaber, S., Chambers, M., Clarke, D. R., Levi, C. G., Hutchinson, J. W., & Evans, A. G. (2008). Mechanisms of cracking and delamination within thick thermal barrier systems in aero-engines subject to calcium-magnesium-alumino-silicate (CMAS) penetration. Materials Science and Engineering: A, 490(1-2), 26-35.
[13] Mercer, C., Faulhaber, S., Evans, A. G., & Darolia, R. (2005). A delamination mechanism for thermal barrier coatings subject to calcium–magnesium–alumino-silicate (CMAS) infiltration. Acta materialia, 53(4), 1029-1039.
[14] Krämer, S., Faulhaber, S., Chambers, M., Clarke, D. R., Levi, C. G., Hutchinson, J. W., & Evans, A. G. (2008). Mechanisms of cracking and delamination within thick thermal barrier systems in aero-engines subject to calcium-magnesium-alumino-silicate (CMAS) penetration. Materials Science and Engineering: A, 490(1-2), 26-35.
[15] Zhou, X., Chen, T., Yuan, J., Deng, Z., Zhang, H., Jiang, J., & Cao, X. (2019). Failure of plasma sprayed nano‐zirconia‐based thermal barrier coatings exposed to molten CaO–MgO–Al2O3–SiO2 deposits. Journal of the American Ceramic Society, 102(10), 6357-6371.
[16] Naraparaju, R., Chavez, J. J. G., Schulz, U., & Ramana, C. V. (2017). Interaction and infiltration behavior of Eyjafjallajökull, Sakurajima volcanic ashes and a synthetic CMAS containing FeO with/in EB-PVD ZrO2-65 wt% Y2 O3 coating at high temperature. Acta Materialia, 136, 164-180.
[17] Arai, M., Fukushima, Y., & Ito, K. (2020). Numerical Simulation of Volcanic Ash Infiltration into Thermal Barrier Coatings. In Key Engineering Materials (Vol. 827, pp. 367-372). Trans Tech Publications Ltd.
[18] Jiang, P., Fan, X., Sun, Y., Li, D., Li, B., & Wang, T. (2017). Competition mechanism of interfacial cracks in thermal barrier coating system. Materials & Design, 132, 559-566.
[19] Chevalier, J., Gremillard, L., Virkar, A. V., & Clarke, D. R. (2009). The tetragonal‐monoclinic transformation in zirconia: lessons learned and future trends. Journal of the American Ceramic Society, 92(9), 1901-1920.
[20] Lynch, S. P., Wanhill, R. J. H., Byrnes, R. T., & Bray, G. H. (2014). Fracture toughness and fracture modes of aerospace aluminum–lithium alloys. In Aluminum-lithium Alloys (pp. 415-455). Butterworth-Heinemann.
[21] 洪榮燦 . (2016). 彈性結構破壞之有限元素分析與其應用實例探討 彈性結構破壞之有限元素分析與其應用實例探討 .
[22] Jackson, R. W., Zaleski, E. M., Poerschke, D. L., Hazel, B. T., Begley, M. R., &
Levi, C. G. (2015). Interaction of molten silicates with thermal barrier coatings
under temperature gradients. Acta Materialia, 89, 396-407.
[23] Ganvir, A., Curry, N., Govindarajan, S., & Markocsan, N. (2016). Characterization
of thermal barrier coatings produced by various thermal spray techniques using
solid powder, suspension, and solution precursor feedstock material. International
Journal of Applied Ceramic Technology, 13(2), 324-332.
[24] Shan, X., Zou, Z., Gu, L., Yang, L., Guo, F., Zhao, X., & Xiao, P. (2016). Buckling failure in air-plasma sprayed thermal barrier coatings induced by molten silicate attack. Scripta Materialia, 113, 71-74.
[25] Garces, H. F., Senturk, B. S., & Padture, N. P. (2014). In situ Raman spectroscopy
studies of high-temperature degradation of thermal barrier coatings by molten silicate deposits. Scripta Materialia, 76, 29-32.
[26] Evans, A. G., Crumley, G. B., & Demaray, R. E. (1983). On the mechanical behavior of brittle coatings and layers. Oxidation of Metals, 20(5-6), 193-216.
[27] Zhu, W., Yang, L., Guo, J. W., Zhou, Y. C., & Lu, C. (2015). Determination of interfacial adhesion energies of thermal barrier coatings by compression test combined with a cohesive zone finite element model. International Journal of Plasticity, 64, 76-87.
[28] Bak, T., Nowotny, J., Prince, K., Rekas, M., & Sorrell, C. C. (2002). Grain boundary diffusion of magnesium in zirconia. Journal of the American Ceramic Society, 85(9), 2244-2250.
[29] Kandil, H. M., Greiner, J. D., & Smith, J. F. (1984). Single‐Crystal Elastic Constants of Yttria‐Stabilized Zirconia in the Range 20° to 700° C. Journal of the American Ceramic Society, 67(5), 341-346.
[30] Gell, M., Xie, L., Jordan, E. H., & Padture, N. P. (2004). Mechanisms of spallation of solution precursor plasma spray thermal barrier coatings. Surface and Coatings Technology, 188, 101-106.
[31] Mao, W. G., Dai, C. Y., Zhou, Y. C., & Liu, Q. X. (2007). An experimental investigation on thermo-mechanical buckling delamination failure characteristic of air plasma sprayed thermal barrier coatings. Surface and Coatings Technology, 201(14), 6217-6227.
[32] Wang, L., Ming, C., Zhong, X. H., Ni, J. X., Tao, S. Y., Zhou, F. F., & Wang, Y. (2019). Prediction of critical rupture of plasma-sprayed yttria stabilized zirconia thermal barrier coatings under burner rig test via finite element simulation and in-situ acoustic emission technique. Surface and Coatings Technology, 367, 58-74.
[33] Yang, L., Yang, T. T., Zhou, Y. C., Wei, Y. G., Wu, R. T., & Wang, N. G. (2016). Acoustic emission monitoring and damage mode discrimination of APS thermal barrier coatings under high temperature CMAS corrosion. Surface and Coatings Technology, 304, 272-282.
[34] Wang, L., Li, D. C., Yang, J. S., Shao, F., Zhong, X. H., Zhao, H. Y., ... & Wang, Y. (2016). Modeling of thermal properties and failure of thermal barrier coatings with the use of finite element methods: a review. Journal of the European Ceramic Society, 36(6), 1313-1331.
[35] Rybicki, E. F., & Kanninen, M. F. (1977). A finite element calculation of stress intensity factors by a modified crack closure integral. Engineering fracture mechanics, 9(4), 931-938.
[36] Moës, N., Dolbow, J., & Belytschko, T. (1999). A finite element method for crack growth without remeshing. International journal for numerical methods in
engineering, 46(1), 131-150.
[37] Diehl, T. (2006). Using ABAQUS cohesive elements to model peeling of an epoxy-bonded aluminum strip: a benchmark study for inelastic peel arms. In DuPont Engineering Technology, Abaqus users conference.
[38] Shanmugam, V., Penmetsa, R., Tuegel, E., & Clay, S. (2013). Stochastic modeling of delamination growth in unidirectional composite DCB specimens using cohesive zone models. Composite Structures, 102, 38-60.
[39] Valoroso, N., Sessa, S., Lepore, M., & Cricrì, G. (2013). Identification of mode-I cohesive parameters for bonded interfaces based on DCB test. Engineering Fracture Mechanics, 104, 56-79.
[40] Shi, D., Song, J., Li, S., Qi, H., & Yang, X. (2019). Cracking behaviors of EB-PVD thermal barrier coating under temperature gradient. Ceramics International, 45(15), 18518-18528.
[41] Mao, W. G., Dai, C. Y., Zhou, Y. C., & Liu, Q. X. (2007). An experimental investigation on thermo-mechanical buckling delamination failure characteristic of air plasma sprayed thermal barrier coatings. Surface and Coatings Technology, 201(14), 6217-6227.
[42] Evans, A. G., Mumm, D. R., Hutchinson, J. W., Meier, G. H., & Pettit, F. S. (2001). Mechanisms controlling the durability of thermal barrier coatings. Progress in materials science, 46(5), 505-553.
[43] Jiang, P., Fan, X., Sun, Y., Li, D., Li, B., & Wang, T. (2017). Competition mechanism of interfacial cracks in thermal barrier coating system. Materials & Design, 132, 559-566.
[44] 蔡宜庭 蔡宜庭 蔡宜庭 , & 林健正 . (2005). 利用鈦金屬將氧化鋯接合之微觀結構分析 (Doctoral dissertation).
[45] Asadikiya, M., Sabarou, H., Chen, M., & Zhong, Y. (2016). Phase diagram for a nano-yttria-stabilized zirconia system. RSC advances, 6(21), 17438-17445.
[46] Borom, M. P., Johnson, C. A., & Peluso, L. A. (1996). Role of environment deposits and operating surface temperature in spallation of air plasma sprayed thermal barrier coatings. Surface and Coatings Technology, 86, 116-126.