簡易檢索 / 詳目顯示

研究生: 鄭鈞燦
Chun-Tsang Cheng
論文名稱: 鈣鎂鋁矽酸鹽(CMAS)侵蝕下引發熱障塗層系統之界面脫層分析
Iterfacial delamination of thermal barrier coatings induced by CMAS(calcium-magnesium-alumino-silicates)attack)
指導教授: 趙振綱
Ching-Kong Chao
口試委員: 郭俞麟
Yu-Lin, Joseph, Kuo
張瑞慶
Rwei-Ching Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 108
中文關鍵詞: 熱障塗層鈣鎂鋁矽酸鹽(CMAS)界面脫層膠合元素
外文關鍵詞: Thermal barrier coatings (TBCs), CMAS, cohesive element, interfacial delamination
相關次數: 點閱:407下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


中文摘要 ................................ ................................ ................................ ........................ I ABSTRACT ................................ ................................ ................................ .................. II 致謝 ................................ ................................ ................................ .............................. III 圖目錄 ................................ ................................ ................................ .......................... VI 表目錄 ................................ ................................ ................................ .......................... XI 第一章 緒論 ................................ ................................ ................................ ................ 12 1.1 前言 ................................ ................................ ................................ .......... 12 1.2 研究規劃 ................................ ................................ ................................ .. 21 第二章 有限元素模擬 ................................ ................................ ................................ 24 2.1單層 TC模型 ................................ ................................ ................................ 27 2.1.1有限元素模型 ................................ ................................ ............................. 27 2.1.2環境溫度設置 ................................ ................................ ............................. 27 2.1.3邊界條件 ................................ ................................ ................................ ..... 27 2.1.4材料參數設置 ................................ ................................ ............................. 27 2.1.5模擬 CMAS的入侵 ................................ ................................ ................... 30 2.1.6模擬與實驗結果比較 ................................ ................................ ................. 37 2.1.7不同孔隙率塗層模擬結果 ................................ ................................ ......... 40 2.1.8有無發生相變化模擬結果 ................................ ................................ ......... 41 2.2 完整 SPS 模型擬 模型擬 ................................ ................................ .................... 45 2.2.1有限元素模型 ................................ ................................ ............................. 45 2.2.2材料參數 ................................ ................................ ................................ ..... 45 2.2.3模擬結果 ................................ ................................ ................................ ..... 46 第三章 破壞模型 ................................ ................................ ................................ ........ 58 3.1 cohesive element 概念 ................................ ................................ .................. 63 3.1.1模擬設置 ................................ ................................ ................................ ..... 65 3.1.2模擬結果 ................................ ................................ ................................ ..... 71 第四章 結果討論 ................................ ................................ ................................ ........ 79 4.1 不同反應常數設置 ................................ ................................ ....................... 79 4.2不同的塗層厚度 與寬................................ ................................ ................ 79 4.3塗層被 CMAS入侵後有無發生相變化 ................................ ...................... 80 4.4不同的 TC層孔隙率 ................................ ................................ .................... 82 第五章 結論 ................................ ................................ ................................ ................ 83 第六章 未來展望 ................................ ................................ ................................ ........ 84 Appendix 實驗模型 ................................ ................................ ................................ .... 85 A.1實驗設計 ................................ ................................ ................................ ....... 89 A.2實驗步驟 ................................ ................................ . 90 A.2.1試件的製備 ................................ ................................ ................................ 89 A.2.2高溫實驗 ................................ ................................ ................................ .... 92 A.3實驗結果 ................................ ................................ ................................ ....... 93 參考文獻 ................................ ................................ ................................ .................... 102

[1] Clarke, D. R., Oechsner, M., & Padture, N. P. (2012). Thermal-barrier coatings for more efficient gas-turbine engines. MRS bulletin, 37(10), 891-898. [2] Vasireddi, R., & Mahapatra, D. R. (2018). Micro-crack pinning and interfacial fracture in mixed metal oxide reinforced epoxy nanocomposite. Journal of Materials Engineering and Performance, 27(11), 5938-5946.
[3] Rabiei, A. G. E. A., & Evans, A. G. (2000). Failure mechanisms associated with the thermally grown oxide in plasma-sprayed thermal barrier coatings. Acta materialia, 48(15), 3963-3976.
[4] Stern, K. H. (Ed.). (1996). Metallurgical and ceramic protective coatings. Springer Science & Business Media.
[5] Strangman, T. E. (1985). Thermal barrier coatings for turbine airfoils. Thin Solid Films, 127(1-2), 93-106.
[6] Bernard, B., Quet, A., Bianchi, L., Joulia, A., Malié, A., Schick, V., & Rémy, B. (2017). Thermal insulation properties of YSZ coatings: suspension plasma spraying (SPS) versus electron beam physical vapor deposition (EB-PVD) and atmospheric plasma spraying (APS). Surface and Coatings Technology, 318, 122-128.
[7] Kumar, V., & Balasubramanian, K. (2016). Progress update on failure mechanisms of advanced thermal barrier coatings: A review. Progress in Organic Coatings, 90, 54-82.
[8] The ash that shut down Europe, Peter Mechnich, DLR MAGEZINE, p.134-134.
[9] 郭巍 , 马壮 , 刘玲 , 朱时珍 , & 李星 . (2017). 航空发动机用热障涂层的
CMAS 侵蚀及防护 . 现代技术陶瓷 , 38(3), 159-174.
[10] Levi, C. G., Hutchinson, J. W., Vidal-Sétif, M. H., & Johnson, C. A. (2012).
Environmental degradation of thermal-barrier coatings by molten deposits. MRS
Bull, 37(10), 932-941.
[11] Giordano, D., & Dingwell, D. B. (2003). The kinetic fragility of natural silicate
melts. Journal of Physics: Condensed Matter, 15(11), S945.
[12] Krämer, S., Faulhaber, S., Chambers, M., Clarke, D. R., Levi, C. G., Hutchinson, J. W., & Evans, A. G. (2008). Mechanisms of cracking and delamination within thick thermal barrier systems in aero-engines subject to calcium-magnesium-alumino-silicate (CMAS) penetration. Materials Science and Engineering: A, 490(1-2), 26-35.
[13] Mercer, C., Faulhaber, S., Evans, A. G., & Darolia, R. (2005). A delamination mechanism for thermal barrier coatings subject to calcium–magnesium–alumino-silicate (CMAS) infiltration. Acta materialia, 53(4), 1029-1039.
[14] Krämer, S., Faulhaber, S., Chambers, M., Clarke, D. R., Levi, C. G., Hutchinson, J. W., & Evans, A. G. (2008). Mechanisms of cracking and delamination within thick thermal barrier systems in aero-engines subject to calcium-magnesium-alumino-silicate (CMAS) penetration. Materials Science and Engineering: A, 490(1-2), 26-35.
[15] Zhou, X., Chen, T., Yuan, J., Deng, Z., Zhang, H., Jiang, J., & Cao, X. (2019). Failure of plasma sprayed nano‐zirconia‐based thermal barrier coatings exposed to molten CaO–MgO–Al2O3–SiO2 deposits. Journal of the American Ceramic Society, 102(10), 6357-6371.
[16] Naraparaju, R., Chavez, J. J. G., Schulz, U., & Ramana, C. V. (2017). Interaction and infiltration behavior of Eyjafjallajökull, Sakurajima volcanic ashes and a synthetic CMAS containing FeO with/in EB-PVD ZrO2-65 wt% Y2 O3 coating at high temperature. Acta Materialia, 136, 164-180.
[17] Arai, M., Fukushima, Y., & Ito, K. (2020). Numerical Simulation of Volcanic Ash Infiltration into Thermal Barrier Coatings. In Key Engineering Materials (Vol. 827, pp. 367-372). Trans Tech Publications Ltd.
[18] Jiang, P., Fan, X., Sun, Y., Li, D., Li, B., & Wang, T. (2017). Competition mechanism of interfacial cracks in thermal barrier coating system. Materials & Design, 132, 559-566.
[19] Chevalier, J., Gremillard, L., Virkar, A. V., & Clarke, D. R. (2009). The tetragonal‐monoclinic transformation in zirconia: lessons learned and future trends. Journal of the American Ceramic Society, 92(9), 1901-1920.
[20] Lynch, S. P., Wanhill, R. J. H., Byrnes, R. T., & Bray, G. H. (2014). Fracture toughness and fracture modes of aerospace aluminum–lithium alloys. In Aluminum-lithium Alloys (pp. 415-455). Butterworth-Heinemann.
[21] 洪榮燦 . (2016). 彈性結構破壞之有限元素分析與其應用實例探討 彈性結構破壞之有限元素分析與其應用實例探討 .
[22] Jackson, R. W., Zaleski, E. M., Poerschke, D. L., Hazel, B. T., Begley, M. R., &
Levi, C. G. (2015). Interaction of molten silicates with thermal barrier coatings
under temperature gradients. Acta Materialia, 89, 396-407.
[23] Ganvir, A., Curry, N., Govindarajan, S., & Markocsan, N. (2016). Characterization
of thermal barrier coatings produced by various thermal spray techniques using
solid powder, suspension, and solution precursor feedstock material. International
Journal of Applied Ceramic Technology, 13(2), 324-332.
[24] Shan, X., Zou, Z., Gu, L., Yang, L., Guo, F., Zhao, X., & Xiao, P. (2016). Buckling failure in air-plasma sprayed thermal barrier coatings induced by molten silicate attack. Scripta Materialia, 113, 71-74.
[25] Garces, H. F., Senturk, B. S., & Padture, N. P. (2014). In situ Raman spectroscopy
studies of high-temperature degradation of thermal barrier coatings by molten silicate deposits. Scripta Materialia, 76, 29-32.
[26] Evans, A. G., Crumley, G. B., & Demaray, R. E. (1983). On the mechanical behavior of brittle coatings and layers. Oxidation of Metals, 20(5-6), 193-216.
[27] Zhu, W., Yang, L., Guo, J. W., Zhou, Y. C., & Lu, C. (2015). Determination of interfacial adhesion energies of thermal barrier coatings by compression test combined with a cohesive zone finite element model. International Journal of Plasticity, 64, 76-87.
[28] Bak, T., Nowotny, J., Prince, K., Rekas, M., & Sorrell, C. C. (2002). Grain boundary diffusion of magnesium in zirconia. Journal of the American Ceramic Society, 85(9), 2244-2250.
[29] Kandil, H. M., Greiner, J. D., & Smith, J. F. (1984). Single‐Crystal Elastic Constants of Yttria‐Stabilized Zirconia in the Range 20° to 700° C. Journal of the American Ceramic Society, 67(5), 341-346.
[30] Gell, M., Xie, L., Jordan, E. H., & Padture, N. P. (2004). Mechanisms of spallation of solution precursor plasma spray thermal barrier coatings. Surface and Coatings Technology, 188, 101-106.
[31] Mao, W. G., Dai, C. Y., Zhou, Y. C., & Liu, Q. X. (2007). An experimental investigation on thermo-mechanical buckling delamination failure characteristic of air plasma sprayed thermal barrier coatings. Surface and Coatings Technology, 201(14), 6217-6227.
[32] Wang, L., Ming, C., Zhong, X. H., Ni, J. X., Tao, S. Y., Zhou, F. F., & Wang, Y. (2019). Prediction of critical rupture of plasma-sprayed yttria stabilized zirconia thermal barrier coatings under burner rig test via finite element simulation and in-situ acoustic emission technique. Surface and Coatings Technology, 367, 58-74.
[33] Yang, L., Yang, T. T., Zhou, Y. C., Wei, Y. G., Wu, R. T., & Wang, N. G. (2016). Acoustic emission monitoring and damage mode discrimination of APS thermal barrier coatings under high temperature CMAS corrosion. Surface and Coatings Technology, 304, 272-282.
[34] Wang, L., Li, D. C., Yang, J. S., Shao, F., Zhong, X. H., Zhao, H. Y., ... & Wang, Y. (2016). Modeling of thermal properties and failure of thermal barrier coatings with the use of finite element methods: a review. Journal of the European Ceramic Society, 36(6), 1313-1331.
[35] Rybicki, E. F., & Kanninen, M. F. (1977). A finite element calculation of stress intensity factors by a modified crack closure integral. Engineering fracture mechanics, 9(4), 931-938.
[36] Moës, N., Dolbow, J., & Belytschko, T. (1999). A finite element method for crack growth without remeshing. International journal for numerical methods in
engineering, 46(1), 131-150.
[37] Diehl, T. (2006). Using ABAQUS cohesive elements to model peeling of an epoxy-bonded aluminum strip: a benchmark study for inelastic peel arms. In DuPont Engineering Technology, Abaqus users conference.
[38] Shanmugam, V., Penmetsa, R., Tuegel, E., & Clay, S. (2013). Stochastic modeling of delamination growth in unidirectional composite DCB specimens using cohesive zone models. Composite Structures, 102, 38-60.
[39] Valoroso, N., Sessa, S., Lepore, M., & Cricrì, G. (2013). Identification of mode-I cohesive parameters for bonded interfaces based on DCB test. Engineering Fracture Mechanics, 104, 56-79.
[40] Shi, D., Song, J., Li, S., Qi, H., & Yang, X. (2019). Cracking behaviors of EB-PVD thermal barrier coating under temperature gradient. Ceramics International, 45(15), 18518-18528.
[41] Mao, W. G., Dai, C. Y., Zhou, Y. C., & Liu, Q. X. (2007). An experimental investigation on thermo-mechanical buckling delamination failure characteristic of air plasma sprayed thermal barrier coatings. Surface and Coatings Technology, 201(14), 6217-6227.
[42] Evans, A. G., Mumm, D. R., Hutchinson, J. W., Meier, G. H., & Pettit, F. S. (2001). Mechanisms controlling the durability of thermal barrier coatings. Progress in materials science, 46(5), 505-553.
[43] Jiang, P., Fan, X., Sun, Y., Li, D., Li, B., & Wang, T. (2017). Competition mechanism of interfacial cracks in thermal barrier coating system. Materials & Design, 132, 559-566.
[44] 蔡宜庭 蔡宜庭 蔡宜庭 , & 林健正 . (2005). 利用鈦金屬將氧化鋯接合之微觀結構分析 (Doctoral dissertation).
[45] Asadikiya, M., Sabarou, H., Chen, M., & Zhong, Y. (2016). Phase diagram for a nano-yttria-stabilized zirconia system. RSC advances, 6(21), 17438-17445.
[46] Borom, M. P., Johnson, C. A., & Peluso, L. A. (1996). Role of environment deposits and operating surface temperature in spallation of air plasma sprayed thermal barrier coatings. Surface and Coatings Technology, 86, 116-126.

無法下載圖示 全文公開日期 2025/07/16 (校內網路)
全文公開日期 2025/07/16 (校外網路)
全文公開日期 2025/07/16 (國家圖書館:臺灣博碩士論文系統)
QR CODE