研究生: |
傅俊中 Chun-Chong Fu |
---|---|
論文名稱: |
以廣義奇異值分解法與約束型卡爾曼濾波法進行指數追蹤 Index tracking by the methods of generalized singular value decomposition and constrained Kalman filter |
指導教授: |
繆維中
W.-C. Miao 韓傳祥 Chuan-Hsiang Han |
口試委員: |
林昌碩
C.-S. Lin 張琬喻 Woan-Yuh Jang 鄭宏文 H.-W. Cheng |
學位類別: |
碩士 Master |
系所名稱: |
管理學院 - 財務金融研究所 Graduate Institute of Finance |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 71 |
中文關鍵詞: | 指數股票型投資基金 、最小誤差平方法 |
外文關鍵詞: | Exchange Traded Funds, ETF, least squares method |
相關次數: | 點閱:474 下載:14 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
因應指數股票型投資基金(Exchange Traded Funds, ETF)市場需求持續的擴大,促使指數追蹤 (index tracking)的課題受到廣大的重視;而線性模型(linear model)與最小誤差平方法(least squares method)是處理追蹤誤差(tracking error)最簡易且普遍的方式。然而,最小誤差平方法的凸目標函數(convex object function)雖可為線性模型解出唯一的最佳參數解,卻難以提供其它具有可行性的次佳解。因此,為能表列更具實務意義層面的最佳解,本研究以廣義奇異值分解法(Generalized Singular Value Decomposition,GSVD)來解構(decompose)凸目標函數,嘗試以封閉解(close-form solution)的形式詳列所有可行解,以利實務上權衡取捨之用。 後續,再進一步地將前述GSVD法所選定出的資產配置之權重參數引入約束型卡爾曼濾波器(constrained Kalman Filter),作為即時預測指數的初始猜值(initial guess),便於後續指數的預測。因推導、證明與實證的結果一致且符合期望,足資佐證廣義奇異值分解法、約束型卡爾曼濾波器適用在指數追蹤的課題上。
Since the expanding markets in the passive investment by Exchange Traded Funds, the financial index tracking has been received the widely attraction. For successfully tracking the financial index, a regression with least square method is effectively and inefficiently applied in the associated parameters estimations. However, the convex function is promised to find the unique best solution for estimating parameters, but it cannot offer other sufficient good candidates. Therefore, Generalized Singular Value Decomposition is proposed to decompose the mentioned convex function for finding the trade-off solutions. Furthermore, the deterministic parameters are employed in the regression and constrained Kalman filter for predicting financial index. In case of the prediction being closed to the actual value of index, it implies that the constrained GSVD and Kalman filter are the qualified methodology for index tracking and forecasting.
外文文獻
Ben Nobel, James W. Daniel, (1987), Applied Linear Algebra, 3 rd, Pearson Press.
Chatterjee, Rupak , (2014), Practical Methods of Financial Engineering and Risk Management 1st ed, Springer Press:Chapter 9 Hedge Fund Replication
Dessislava A. Pachamanova, Frank J. Fabozzi, (2016), Portfolio Construction And Analytics, 1st, Wiley Press.
Douglas C. Montgomery, (2017), Design and analysis of experiments, 9 th, Wiley Press.
D. Simon, (2010), Kalman filtering with state constraints: a survey of linear and nonlinear algorithms, IET Control Theory Appl., 1– 16
Gen H. Golub, Charles F., (2013),Van Loan, Matrix Computation IV, The Johns Hopkins University Press.
Jodi L. Mead, Rosemary A. Renaut, (2010), Least squares problems with inequality constraints as quadratic constraints, Linear Algebra and its Applications, 432(8): 1936-1949
K. Benidis and Y. Feng and D. P. Palomar, (2018),Optimization Methods for Financial Index tracking: From Theory to Practice, Foundations and Trends in Optimization, now Press:vol. 3, no. 3, pp. 171–279
Mohinder S. Grewal, Angus P. Andrews, (2017), Kalman Filtering: Theory and Practice Using Matlab, 4ed , Wiley-IEEE Press.
N.C.P. Edirisinghe,(2013), Index-tracking optimal portfolio selection, Quantitative Finance Letters, 1(1):16-20
Tesfahun Berhane, Nurilign Shibabaw, Aemiro Shibabaw, Molalign Adam, Abera A. Muhamed,(2018), Forecasting the Ethiopian Coffee Price Using Kalman Filtering Algorithm, J. of Resources and Ecology, 9(3):302-305
Tomas Björk, (2009), Arbitrage Theory in continuous Time, 3rd, Oxford University Press USA.
Yan Xu, Guosheng Zhang, (2015), Application of Kalman Filter in the Prediction of Stock Price. International Symposium on Knowledge Acquisition and Modeling (KAM).
中文文獻
章宇傑,(2013),指數投資的利器 ETF指數股票型基金,證交資料,611期,證券交易所。
曹志廣,(2013),金融計算與編程 基于Matlab的應用,第2版,上海財經大學出版社。
張大成,(2018),財務軟體應用 Excel全方位引導,第2版,雙葉書廊。
張賢達,(2004),矩陣分析與應用,第1版, 清華大學出版社。
鄭志勇、王洪武,(2018),金融數量分析-基於Matlab編程,第4版,北京航空航天大學出版社。