簡易檢索 / 詳目顯示

研究生: NGUYEN THE DUC HANH
NGUYEN THE DUC HANH
論文名稱: 聚乙烯亞胺改質圓柱形NaY沸石填充床在環境條件下捕捉CO2的實驗與模型研究
Experimental and modeling studies on CO2 capture by Polyethyleneimine-modified cylindrical NaY zeolite in packed beds under ambient conditions
指導教授: 蔡伸隆
Shen-Long Tsai
張煜光
Yu-Kaung Chang
口試委員: 李振綱
Cheng-Kang Lee
藍祺偉
John Chi-Wei Lan
王勝仕
Steven Sheng-Shi Wang
蔡伸隆
Shen-Long Tsai
張煜光
Yu-Kuang Chang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 115
外文關鍵詞: CO2 capture, NaY zeolite, Polyethyleneimine (PEI), Dynamic adsorption capacity, kinetic mechanism, breakthrough curves, error analysis
相關次數: 點閱:59下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


Considering the escalating apprehensions regarding global warming, the pragmatic significance of developing carbon dioxide adsorbents and industrial processes for carbon dioxide capture becomes particularly pronounced. This study delves into the utilization of packed-bed columns for the adsorption of CO2 under ambient conditions (25oC and 101.3 kPa), employing polyethyleneimine (PEI)-modified cylindrical zeolite as the adsorbent material. PEI modification can significantly improve the CO2 adsorption capacity and kinetics of zeolites. The research combines experimental investigation and modeling approaches to comprehensively understand the adsorption dynamics and performance of the modified zeolite. Packed-bed columns, commonly used in gas separation processes, are assessed for their effectiveness in capturing CO2, particularly under conditions representative of typical environmental settings. The experimental and modeling studies of CO2 adsorption in packed-bed columns using PEI-modified zeolites under ambient conditions are still limited. Hence, the findings of this research contribute valuable insights into the potential of PEI-modified zeolite in ambient CO2 capture applications within a packed-bed column configuration.
Polyethyleneimine (PEI) modification significantly improves the CO2 adsorption capacity and selectivity of NaY cylindrical zeolites. The active sites introduced by PEI coatings enable CO2 capture through both chemisorption and physical adsorption mechanisms. These tailored modifications offer a promising avenue for enhancing the overall performance of NaY cylindrical zeolites as CO2 adsorbents. The experimental results showed that the PEI-modified zeolites exhibited superior CO2 adsorption performance compared to the original zeolites, the NaY cylindrical zeolites 10 (wt%) PEI-loading is the most efficient variant, exhibiting a commendable adsorption capacity of 6.122 mg/g. The increased CO2 adsorption capacity and faster adsorption kinetics of the PEI-modified zeolites were attributed to the strong interaction between CO2 molecules and the amine groups on the PEI molecules.
This study incorporates rigorous experimentation to gather empirical data on breakthrough curves and adsorption capacities, employing analysis and modeling techniques to simulate the dynamic behavior of the adsorption process within the packed bed. A thorough examination of various operational parameters, including initial CO2 concentration, packed bed height, gas flow rate, and sorbent state, is conducted to discern their respective influences on CO2 adsorption breakthrough curves and overall adsorption performance. A notable revelation is identifying optimal operational conditions conducive to dynamic CO2 capture performance, specifically an initial CO2 concentration of 1000 ppm, a packed bed height of 10 cm, and a gas flow rate of 100 mL/min.
The kinetic modeling results showed that the dynamic capture of CO2 on PEI-modified zeolites followed well-fitted by the Avrami fractional kinetic model. The kinetic parameters of CO2 adsorption on PEI-modified zeolites were obtained and correlated with the operating parameters. Within the array of breakthrough curve models assessed, the Yoon-Nelson model yielded the most favorable fit to the experimental data and displayed the least residual variance. This study also uses error functions for the analysis of the model. The amalgamation of diverse error functions and statistical approaches enabled a thorough and impartial evaluation of the models.
Overall, this study provides valuable insights into the CO2 adsorption performance of PEI-modified zeolites in packed-bed columns under ambient conditions. The kinetic model developed in this study can be used to predict the CO2 adsorption breakthrough curves of PEI-modified zeolites in packed-bed columns under different operating conditions. This information is useful for the design and operation of packed-bed columns for CO2 adsorption using PEI-modified zeolites.

ABSTRACT ii ACKNOWLEDGEMENTS iv TABLE OF CONTENT v LIST OF FIGURES vii LIST OF TABLES x LIST OF ABBREVIATIONS AND SYMBOLS xi CHAPTER 1. INTRODUCTION 1 1.1. Background 1 1.2. Objectives 2 1.3. Thesis organization 3 CHAPTER 2. LITERATURE REVIEW 5 2.1. Direct air capture 5 2.2. CO2 capture by adsorption 7 2.3. Zeolite-based adsorbents in CO2 separation 9 2.3.1. Zeolite 9 2.3.2. Polythylenimine 11 2.3.3. Amine-functionalized zeolite sorbents 12 2.4. Dynamic adsorption of CO2 14 2.4.1. Dynamic kinetic adsorption 15 2.4.2. Breakthrough curves 16 CHAPTER 3. MATERIALS AND METHODS 19 3.1. Introduction materials 19 3.2. Adsorbent modifies and characterization 20 3.2.1. Preparation of cylinder-shaped NaY zeolite and amine-modified adsorbents 20 3.2.2. Characterization of the adsorbent 21 3.3. Experimental Setup and Procedure 22 3.4. Methods of CO2 adsorption capacity 24 3.4.1. CO2 dynamic adsorption capacity calculation 24 3.4.2. Dynamic Adsorption Performance Indicator 25 3.5. Modeling of CO2 adsorption onto sorbents: Kinetic and breakthrough curve analysis 26 3.5.1. Kinetic adsorption models 26 3.5.2. Breakthrough curve models 28 3.6. Data analysis 31 3.6.1. Linear and Nonlinear analysis 31 3.6.2. Error function 33 CHAPTER 4. RESULTS AND DISCUSSION 36 4.1. NaY and PEI–modified adsorbents characterization. 36 4.2. Evaluation of CO2 adsorption capacity of NaY and PEI–modified adsorbents 39 4.2.1. Optimize the PEI-modified NaY zeolite for the preparation of carbon dioxide adsorbent. 39 4.2.2. Adsorption capacity of PEI–modified NaY zeolite adsorbents 42 4.3. Kinetic model of carbon dioxide capture by PEI-modified cylinder-shaped NaY zeolite 44 4.3.1. Linear regression analysis 46 4.3.2. Nonlinear regression analysis 51 4.4. Breakthrough curve model of carbon dioxide capture by PEI-modified cylinder-shaped NaY zeolite 57 4.4.1. Breakthrough curve analysis 57 4.4.2. Breakthrough curve modeling 66 4.4.3. Data analysis 74 CHAPTER 5. CONCLUSION AND RECOMMANDATIONS 84 5.1. Conclusion 84 5.2. Recommandation 85 REFERENCES 86 APPENDIX 100

[1] Kumar KV, Porkodi K, Rocha F. Comparison of various error functions in predicting the optimum isotherm by linear and non-linear regression analysis for the sorption of basic red 9 by activated carbon. J Hazard Mater 2008;150:158–65. https://doi.org/10.1016/j.jhazmat.2007.09.020.
[2] Lee CG, Kim JH, Kang JK, Kim SB, Park SJ, Lee SH, et al. Comparative analysis of fixed-bed sorption models using phosphate breakthrough curves in slag filter media. Desalination Water Treat 2015;55:1795–805. https://doi.org/10.1080/19443994.2014.930698.
[3] Subramanyam B, Das A. Linearised and non-linearised isotherm models optimization analysis by error functions and statistical means. J Environ Health Sci Eng 2014:12–92. https://doi.org/10.1186/2052-336X-12-92.
[4] Castel C, Bounaceur R, Favre E. Membrane Processes for Direct Carbon Dioxide Capture From Air: Possibilities and Limitations. Front Chem Eng 2021;3:1–15. https://doi.org/10.3389/fceng. 2021.668867.
[5] Leung DYC, Caramanna G, Maroto-Valer MM. An overview of current status of carbon dioxide capture and storage technologies. Renew Sustain Energy Rev 2014;39: 426–43. https://doi.org/10.1016 /j.rser.2014.07.093.
[6] Zagho MM, Hassan MK, Khraisheh M, Al-Maadeed MAA, Nazarenko S. A review on recent advances in CO2 separation using zeolite and zeolite-like materials as adsorbents and fillers in mixed matrix membranes (MMMs). Chem Eng J Adv 2021;6. https://doi.org/10.1016/j.ceja.2021. 100091.
[7] Yu CH, Huang CH, Tan CS. A review of CO2 capture by absorption and adsorption. Aerosol Air Qual Res 2012;12:745–69. https://doi.org/ 10.4209aaqr.2012.05.0132.
[8] Girimonte R, Formisani B, Testa F. Adsorption of CO2 on a confined fluidized bed of pelletized 13X zeolite. Powder Technol 2017;311:9–17. https://doi.org/10.1016/j.powtec.2017.01.033.
[9] Bezerra DP, Silva FWMD, Moura PASD, Sousa AGS, Vieira RS, Rodriguez-Castellon E, et al. CO2 adsorption in amine-grafted zeolite 13X. Appl Surf Sci 2014; 314:314–21. https://doi.org/10.1016/ j.apsusc.2014.06.164.
[10] Ang TN, Young BR, Taylor M, Burrell R, Aroua MK, Baroutian S. Breakthrough analysis of continuous fixed-bed adsorption of sevoflurane using activated carbons. Chemosphere 2020;239:124839. https://doi.org/ 10.1016/j.chemosphere.2019.124839.
[11] Lu C, Bai H, Wu B, Su F, Hwang JF. Comparative study of CO2 capture by carbon nanotubes, activated carbons, and zeolites. Energy and Fuels 2008;22:3050–6. https://doi.org/10.1021/ef8000086.
[12] Gargiulo N, Pepe F, Caputo D. CO2 adsorption by functionalized nanoporous materials: A Review. J Nanosci Nanotechnol 2014;14:1811–22. https://doi.org/10.1166/jnn.2014.8893.
[13] Ghanbari T, Abnisa F, Wan Daud WMA. A review on production of metal organic frameworks (MOF) for CO2 adsorption. Sci Total Environ 2020;707:135090. https://doi.org/10.1016/j.scitotenv .2019.135090.
[14] Rafiul Hasan M, Moriones A, Malankowska M, Coronas J. Study on the recycling of zeolitic imidazolate frameworks and polymer Pebax® 1657 from their mixed matrix membranes applied to CO2 capture. Sep Purif Technol 2023;304. https://doi.org/10.1016/j.seppur.2022.122355.
[15] Cheng TH, Sankaran R, Show PL, Ooi CW, Liu BL, Chai WS, et al. Removal of protein wastes by cylinder-shaped NaY zeolite adsorbents decorated with heavy metal wastes. Int J Biol Macromol 2021;185:761–72. https://doi.org/10.1016/j.ijbiomac.2021.06.177.
[16] Sang S, Liu Z, Tian P, Liu Z, Qu L, Zhang Y. Synthesis of small crystals zeolite NaY. Mater Lett 2006;60:1131–3. https://doi.org/10.1016/ j.matlet.2005.10.110.
[17] Priyadarshini P, Rim G, Rosu C, Song M, Jones CW. Direct Air Capture of CO2 Using Amine/Alumina Sorbents at Cold Temperature. ACS Environmental Au 2023. https://doi.org/10.1021/acsenvironau.3c00010.
[18] Shi Y, Ni R, Zhao Y. Review on Multidimensional Adsorbents for CO2 Capture from Ambient Air: Recent Advances and Future Perspectives. Energy and Fuels 2023;37:6365–81. https://doi.org/10.1021/acs. energyfuels.3c00381.
[19] Russell-Parks GA, Leick N, Marple MAT, Strange NA, Trewyn BG, Pang SH, et al. Fundamental Insight into Humid CO2 Uptake in Direct Air Capture Nanocomposites Using Fluorescence and Portable NMR Relaxometry. J Phys Chem C 2023;127:15363–74. https://doi.org/ 10.1021/acs.jpcc.3c03653.
[20] Boer DG, Langerak J, Pescarmona PP. Zeolites as Selective Adsorbents for CO2 Separation. ACS Appl Energy Mater 2023;6:2634–56. https://doi.org/10.1021/acsaem.2c03605.
[21] Rani MHA, Hitam CNC, Taib MR. Amine (Polyethyleneimine)-modified solid adsorbent for CO2 capture. J Phys Conf Ser, vol. 2259, Institute of Physics; 2022. https://doi.org/10.1088/1742-6596/2259/1/012006.
[22] Mukherjee S, Sikdar N, O’nolan D, Franz DM, Gascón V, Kumar A, et al. Trace CO2 capture by an ultramicroporous physisorbent with low water affinity. Sci Adv 2019;5:9171–200. https://doi.org/10.1126/ sciadv.aax9171.
[23] Rim G, Kong F, Song M, Rosu C, Priyadarshini P, Lively RP, et al. Sub-Ambient Temperature Direct Air Capture of CO2 using Amine-Impregnated MIL-101(Cr) Enables Ambient Temperature CO2 Recovery. JACS Au 2022;2:380–93. https://doi.org/10.1021/jacsau.1c00414.
[24] Chaffee AL, Knowles GP, Liang Z, Zhang J, Xiao P, Webley PA. CO2 capture by adsorption: Materials and process development. Int J Greenh Gas Control 2007;1:11–8. https://doi.org/10.1016/S1750-5836(07)00031-X.
[25] Guo B, Zhang J, Wang Y, Qiao X, Xiang J, Jin Y. Study on CO2 adsorption capacity and kinetic mechanism of CO2 adsorbent prepared from fly ash. Energy 2023;263. https://doi.org/10.1016/j .energy.2022.125764.
[26] Smith P, Davis SJ, Creutzig F, Fuss S, Minx J, Gabrielle B, et al. Biophysical and economic limits to negative CO2 emissions. Nat Clim Chang 2016;6:42–50. https://doi.org/10.1038/nclimate2870.
[27] Minx JC, Lamb WF, Callaghan MW, Bornmann L, Fuss S. Fast growing research on negative emissions. Environ Res Lett 2017;12. https://doi.org/ 10.1088/1748-9326/aa5ee5.
[28] Custelcean R. Direct air capture of CO2: Via crystal engineering. Chem Sci 2021;12:12518–28. https://doi.org/10.1039/d1sc04097a.
[29] Sai Bhargava Reddy M, Ponnamma D, Sadasivuni KK, Kumar B, Abdullah AM. Carbon dioxide adsorption based on porous materials. RSC Adv 2021;11:12658–81. https://doi.org/10.1039/d0ra10902a.
[30] Boone P, He Y, Lieber AR, Steckel JA, Rosi NL, Hornbostel KM, et al. Designing optimal core-shell MOFs for direct air capture. Nanoscale 2022;14:16085–96. https://doi.org/10.1039/d2nr03177a.
[31] Seader JD, Henley EJ. Separation process principles John Wiley & Sons. Inc, New Jersey 1998.
[32] Hernández-Palomares A, Alcántar-Vázquez B, Ramírez-Zamora RM, Coutino-Gonzalez E, Espejel-Ayala F. CO2 capture using lithium-based sorbents prepared with construction and demolition wastes as raw materials. Mater Today Sustain 2023;24:100491. https://doi.org/ 10.1016/j.mtsust.2023.100491.
[33] Ahmadi M, Ghaemi A, Qasemnazhand M. Lithium hydroxide as a high capacity adsorbent for CO2 capture: experimental, modeling and DFT simulation. Sci Rep 2023;13:7150. https://doi.org/10.1038/s41598-023-34360-z.
[34] Jensen MB, Pettersson LGM, Swang O, Olsbye U. CO2 Sorption on MgO and CaO Surfaces: A Comparative Quantum Chemical Cluster Study. J Phys Chem B 2005;109:16774–81. https://doi.org/10.1021/jp052037h.
[35] GENG Y, GUO Y, FAN B, CHENG F, CHENG H. Research progress of calcium-based adsorbents for CO2 capture and anti-sintering modification. J Fuel Chem Technol 2021;49:998–1013. https://doi.org/10.1016/S1872-5813(21)60040-3.
[36] Lara Y, Romeo LM. Amine-impregnated Alumina Solid Sorbents for CO2 Capture. Lessons Learned. Energy Procedia, vol. 114, Elsevier Ltd; 2017, p. 2372–9. https://doi.org/10.1016/j.egypro.2017.03.1383.
[37] Gebald C, Wurzbacher JA, Tingaut P, Zimmermann T, Steinfeld A. Amine-based nanofibrillated cellulose as adsorbent for CO2 capture from air. Environ Sci Technol 2011;45:9101–8. https://doi.org/10.1021/ es202223p.
[38] Thakkar H, Issa A, Rownaghi AA, Rezaei F. CO2 Capture from Air Using Amine-Functionalized Kaolin-Based Zeolites. Chem Eng Technol 2017;40:1999–2007. https://doi.org/10.1002/ceat.201700188.
[39] Glade H, Al-Rawajfeh AE. Modeling of CO2 release and the carbonate system in multiple-effect distillers. Desalination 2008;222:605–25. https://doi.org/10.1016/j.desal.2007.02.069.
[40] Erkey C. Thermodynamics and dynamics of adsorption of metal complexes on surfaces from supercritical solutions. Supercritical Fluid Science and Technology, vol. 1, Elsevier B.V.; 2011, p. 41–77. https://doi.org/10.1016/B978-0-08-045329-3.00004-4.
[41] Serafin J, Dziejarski B. Application of isotherms models and error functions in activated carbon CO2 sorption processes. Microporous Mesoporous Mater 2023;354. https://doi.org/10.1016/j.micromeso.2023. 112513.
[42] Webb PA. Introduction to Chemical Adsorption Analytical Techniques and their Applications to Catalysis. Micromeritics Instrument Corp, Technical Publications 2003:1–12.
[43] Millward AR, Yaghi OM. Metal− organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J Am Chem Soc 2005;127:17998–9.
[44] D’Alessandro DM, Smit B, Long JR. Carbon dioxide capture: prospects for new materials. Angewandte Chemie International Edition 2010;49:6058–82.
[45] Arruda TM, Heon M, Presser V, Hillesheim PC, Dai S, Gogotsi Y, et al. In situ tracking of the nanoscale expansion of porous carbon electrodes. Energy Environ Sci 2013;6:225–31.
[46] Duong D. Do. Analysis of Adsorption Kinetics in a Zeolite Particle. Adsorption Analysis: Equilibria and Kinetics, vol. Volume 2, Published By Imperial College Press And Distributed By World Scientific Publishing Co.; 1998, p. 603–77. https://doi.org/doi:10.1142/ 9781860943829_0010.
[47] Pérez-Ramírez J, Christensen CH, Egeblad K, Christensen CH, Groen JC. Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chem Soc Rev 2008;37:2530–42.
[48] Choi S, Drese JH, Jones CW. Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem: Chemistry & Sustainability Energy & Materials 2009;2:796–854.
[49] Cejka J. Introduction to zeolite science and practice. Elsevier; 2007.
[50] Pham T-H, Lee B-K, Kim J, Lee C-H. Enhancement of CO2 capture by using synthesized nano-zeolite. J Taiwan Inst Chem Eng 2016;64:220–6.
[51] Al-Jubouri SM, Sabbar HA, Lafta HA, Waisi BI. Effect of synthesis parameters on the formation 4A zeolite crystals: characterization analysis and heavy metals uptake performance study for water treatment. Desalination Water Treat 2019;165:290–300.
[52] MA I, Eltayeb MAZ, SA AM. Elimination of heavy metals from aqueous solutions using Zeolite LTA synthesized from sudanese clay. Research Journal of Chemical Sciences, ISSN 2013;2231:606X.
[53] Zahmakiran M. Preparation and characterization of LTA-type zeolite framework dispersed ruthenium nanoparticles and their catalytic application in the hydrolytic dehydrogenation of ammonia–borane for efficient hydrogen generation. Materials Science and Engineering: B 2012;177:606–13.
[54] Kumar S, Srivastava R, Koh J. Utilization of zeolites as CO2 capturing agents: Advances and future perspectives. J CO2 Util 2020;41. https://doi.org/10.1016/j.jcou.2020.101251.
[55] Won W, Lee S, Lee KS. Modeling and parameter estimation for a fixed-bed adsorption process for CO2 capture using zeolite 13X. Sep Purif Technol 2012;85:120–9. https://doi.org/10.1016/j.seppur.2011.09.056.
[56] Murge P, Dinda S, Roy S. Zeolite-Based Sorbent for CO2 Capture: Preparation and Performance Evaluation. Langmuir 2019. https://doi.org/10.1021/acs.langmuir.9b02259.
[57] Gunawan T, Wijiyanti R, Widiastuti N. Adsorption-desorption of CO2 on zeolite-Y-templated carbon at various temperatures. RSC Adv 2018;8:41594–602. https://doi.org/10.1039/c8ra09200a.
[58] Drioli E, Giorno L. Encyclopedia of membranes. Springer; 2018.
[59] Masoudian SK, Sadighi S, Abbasi A. Synthesis and characterization of high aluminum zeolite X from technical grade materials. Bull Chem React Eng Catal 2013;8:54.
[60] Lee JM, Seo SM, Suh JM, Lim WT. Synthesis and single-crystal structures of fully dehydrated fully Sr2+-exchanged zeolite Y (FAU) and its benzene sorption complex, |Sr37.5|[Si117Al75O384]-FAU and |Sr37.5(C6H6)33(H2O)15|[Si117Al75O384]-FAU. J Porous Mater 2011;18:523–34. https://doi.org/10.1007/s10934-010-9415-z.
[61] Rege SU, Yang RT, Buzanowski MA. Sorbents for air prepurification in air separation. Chem Eng Sci 2000;55:4827–38.
[62] Varghese AM, Karanikolos GN. CO2 capture adsorbents functionalized by amine – bearing polymers: A review. Int J Greenh Gas Control 2020;96:103005. https://doi.org/10.1016/j.ijggc.2020.103005.
[63] Lantero Jr OJ. Glutaraldehyde/polyethylenimine immobilization of whole microbial cells 1982.
[64] Bos MA, Shervani Z, Anusiem ACI, Giesbers M, Norde W, Kleijn JM. Influence of the electric potential of the interface on the adsorption of proteins. Colloids Surf B Biointerfaces 1994;3:91–100.
[65] Sayari A, Heydari-Gorji A, Yang Y. CO2-induced degradation of amine-containing adsorbents: reaction products and pathways. J Am Chem Soc 2012;134:13834–42.
[66] Xu X, Song C, Andresen JM, Miller BG, Scaroni AW. Preparation and characterization of novel CO2 “molecular basket” adsorbents based on polymer-modified mesoporous molecular sieve MCM-41. Microporous and Mesoporous Mater 2003;62:29–45.
[67] Goeppert A, Meth S, Prakash GKS, Olah GA. Nanostructured silica as a support for regenerable high-capacity organoamine-based CO2 sorbents. Energy Environ Sci 2010;3:1949–60.
[68] Wang X, Song C. Temperature-programmed desorption of CO2 from polyethylenimine-loaded SBA-15 as molecular basket sorbents. Catal Today 2012;194:44–52.
[69] Bollini P, Didas SA, Jones CW. Amine-oxide hybrid materials for acid gas separations. J Mater Chem 2011;21:15100–20.
[70] Bollini P, Choi S, Drese JH, Jones CW. Oxidative degradation of aminosilica adsorbents relevant to postcombustion CO2 capture. Energy & Fuels 2011;25:2416–25.
[71] Xu J, Gao C, Feng X. Thin-film-composite membranes comprising of self-assembled polyelectrolytes for separation of water from ethylene glycol by pervaporation. J Memb Sci 2010;352:197–204.
[72] Xu J, Feng X, Chen P, Gao C. Development of an antibacterial copper (II)-chelated polyacrylonitrile ultrafiltration membrane. J Memb Sci 2012;413:62–9.
[73] Hack J, Maeda N, Meier DM. Review on CO2 Capture Using Amine-Functionalized Materials. ACS Omega 2022;7:39520–30. https://doi.org/ 10.1021/acsomega.2c03385.
[74] Khader MM, Al-Marri MJ, Ali S, Qi G, Giannelis EP. Adsorption of CO2 on Polyethyleneimine 10k-Mesoporous silica Sorbent: XPS and TGA Studies. Am J Analyt Chem 2015;06:274–84. https://doi.org/10.4236/ ajac.2015.64026.
[75] Bingre R, Louis B, Nguyen P. An overview on zeolite shaping technology and solutions to overcome diffusion limitations. Catalysts 2018;8. https://doi.org/10.3390/catal8040163.
[76] Tan C, Liu Z, Yonezawa Y, Sukenaga S, Ando M, Shibata H, et al. Unique crystallization behavior in zeolite synthesis under external high pressures. Chem Commun 2020;56:2811–4. https://doi.org/10.1039/ c9cc09966b.
[77] Zaman Chowdhury Z, Bee Abd Hamid S, Mohd Zain S. Evaluating Design Parameters for Breakthrough Curve Analysis and Kinetics of Fixed Bed Columns for Cu(II) Cations Using Lignocellulosic Wastes. Bioresources 2015;10:732–49. https://doi.org/10.15376/BIORES.10.1.732-749.
[78] Wang J, Guo X. Adsorption kinetic models: Physical meanings, applications, and solving methods. J Hazard Mater 2020;390. https://doi.org/10.1016/j.jhazmat.2020.122156.
[79] Krstić V. Chapter 14 - Role of zeolite adsorbent in water treatment. In: Bhanvase B, Sonawane S, Pawade V, Pandit A, editors. Handbook of Nanomaterials for Wastewater Treatment, Elsevier; 2021, p. 417–81. https://doi.org/10.1016/B978-0-12-821496-1.00024-6.
[80] Esmail R. Monazam, James Spenik, Lawrence J. Shadle. Fluid bed adsorption of carbon dioxide on immobilized polyethylenimine (PEI):Kinetic analysis and breakthrough behavior. Chem Eng J 2013;23:795–805. https://doi.org/10.1016/j.cej.2013.02.041.
[81] Himanshu P. Fixed bed column adsorption study a comprehensive review. Applied Water Science 2019:9–45. https://doi.org/10.1007/s13201-019-0927-7.
[82] Nimibofa A, Augustus N E, Donbebe W. Modelling and Interpretation of Adsorption Isotherms. J Chem 2017;2017:11. https://doi.org/10.1155/ 2017/3039817.
[83] Singh J, Bhunia H, Basu S. Synthesis of porous carbon monolith adsorbents for carbon dioxide capture: Breakthrough adsorption study. J Taiwan Inst Chem Eng 2018;89:140–50. https://doi.org/10.1016/j.jtice. 2018.04.031.
[84] Onyango MS, Leswifi TY, Ochieng A, Kuchar D, Otieno FO, Matsuda H. Breakthrough Analysis for Water Defluoridation Using Surface-Tailored Zeolite in a Fixed Bed Column. Ind Eng Chem Res 2009;48:931–7. https://doi.org/10.1021/ie0715963.
[85] Serna-Guerrero R, Sayari A. Modeling adsorption of CO2 on amine-functionalized mesoporous silica. 2: Kinetics and breakthrough curves. Chem Eng J 2010;161:182–90. https://doi.org/10.1016/ j.cej.2010.04.042.
[86] Chu KH. Breakthrough curve analysis by simplistic models of fixed bed adsorption: In defense of the century-old Bohart-Adams model. Chem Eng J 2020;380. https://doi.org/10.1016/j.cej.2019.122513.
[87] González-López ME, Laureano-Anzaldo CM, Pérez-Fonseca AA, Arellano M, Robledo-Ortíz JR. A discussion on linear and non-linear forms of Thomas equation for fixed-bed adsorption column modeling. Revista Mexicana de Ingeniera Quimica 2021;20:875–84. https://doi.org/10.24275/rmiq/Fen2337.
[88] Zhang S, Dong H, Lin A, Zhang C, Du H, Mu J, et al. Design and Optimization of Solid Amine CO2 Adsorbents Assisted by Machine Learning. ACS Sustain Chem Eng 2022;10:13185–93. https://doi.org/ 10.1021/acssuschemeng.2c04492.
[89] Suwannahong K, Wongcharee S, Kreetachart T, Sirilamduan C, Rioyo J, Wongphat A. Evaluation of the microsoft excel solver spreadsheet-based program for nonlinear expressions of adsorption isotherm models onto magnetic nanosorbent. Applied Sciences (Switzerland) 2021;11. https://doi.org/10.3390/app11167432.
[90] Nagy B, Mânzatu C, Măicăneanu A, Indolean C, Barbu-Tudoran L, Majdik C. Linear and nonlinear regression analysis for heavy metals removal using Agaricus bisporus macrofungus. Arab J Chem 2017;10:S3569–79. https://doi.org/10.1016/j.arabjc.2014.03.004.
[91] Ayawei N, Ebelegi AN, Wankasi D. Modelling and interpretation of adsorption isotherms. J Chem 2017;2017. https://doi.org/10.1155/2017/ 3039817.
[92] Sanghamitra Kundu, A.K. Gupta. Arsenic adsorption onto iron oxide-coated cement (IOCC): Regression analysis of equilibrium data with several isotherm models and their optimization. Chem Eng J 2006;122:93–106. https://doi.org/10.1016/j.cej.2006.06.002.
[93] F.J. Rivas, F.J. Beltrán, O. Gimeno, J. Frades, F. Carvalho. Adsorption of landfill leachates onto activated carbon: Equilibrium and kinetics. J Hazard Mater 2006;131:170–8. https://doi.org/10.1016/j.jhazmat. 2005.09.022.
[94] J.C.Y. Ng, W.H. Cheung, G. McKay. Equilibrium studies for the sorption of lead from effluents using chitosan. Chemosphere 2003;52:1021–30. https://doi.org/10.1016/S0045-6535(03)00223-6.
[95] Ho YS, Porter JF, Mckay G. Equilibrium Isotherm Studies for the Sorption of Divalent Metal Ions onto Peat: Copper, Nickel and Lead Single Component Systems. Water Air Soil Pollut 2002;141:1–33. https://doi.org/10.1023/A:1021304828010.
[96] Karka S, Kodukula S, Nandury S V., Pal U. Polyethylenimine-Modified Zeolite 13X for CO2 Capture: Adsorption and Kinetic Studies. ACS Omega 2019;4:16441–9. https://doi.org/10.1021/acsomega.9b02047.
[97] Tiwari D, Goel C, Bhunia H, Bajpai PK. Dynamic CO2 capture by carbon adsorbents: Kinetics, isotherm and thermodynamic studies. Sep Purif Technol 2017;181:107–22. https://doi.org/10.1016/j.seppur.2017.03.014.
[98] Cai D-L, Thanh DTH, Show P-L, How S-C, Chiu C-Y, Hsu M, et al. Studies of protein wastes adsorption by chitosan-modified nanofibers decorated with dye wastes in batch and continuous flow processes: Potential environmental applications. Membranes 2022;12:759. https://doi.org/10.3390/membranes12080759.
[99] Chen K-H, Lai Y-R, Hanh NTD, Wang SS-S, Chang Y-K. Breakthrough Curve Modeling and Analysis for Lysozyme Adsorption by Tris(hydroxymethyl)aminomethane Affinity Nanofiber Membrane. Membranes 2023;13:761. https://doi.org/10.3390/membranes 13090761.
[100] Ohs B, Krödel M, Wessling M. Adsorption of carbon dioxide on solid amine-functionalized sorbents: A dual kinetic model. Sep Purif Technol 2018;204:13–20. https://doi.org/10.1016/j.seppur.2018.04.009.
[101] Hsin A, How S-C, Wang SS-S, Ooi CW, Chiu C-Y, Chang Y-K. Kinetic and thermodynamic studies of lysozyme adsorption on cibacron blue F3GA dye-ligand immobilized on aminated nanofiber membrane. Membranes 2021;11:963. https://doi.org/10.3390/membranes 11120963.
[102] Chen Y-S, Ooi CW, Show PL, Hoe BC, Chai WS, Chiu C-Y, et al. Removal of ionic dyes by nanofiber membrane functionalized with chitosan and egg white proteins: membrane preparation and adsorption efficiency. Membranes 2022;12:63. https://doi.org/10.3390/membranes 12010063.
[103] Almasian A, Olya ME, Mahmoodi NM. Synthesis of polyacrylonitrile/polyamidoamine composite nanofibers using electrospinning technique and their dye removal capacity. J Taiwan Inst Chem Eng 2015;49:119–28. https://doi.org/10.1016/j.jtice.2014.11.027.
[104] Thomas HC. Heterogeneous ion exchange in a flowing system. J Am Chem Soc 1944;66:1664–6. https://doi.org/10.1021/ja01238a017.
[105] Yoon YH, Nelson JH. Application of gas adsorption kinetics I. A theoretical model for respirator cartridge service life. Am Ind Hyg Assoc J 1984;45:509–16. https://doi.org/10.1080/15298668491400197.
[106] Bhagawati PB, Adeogun AI, Shivayogimath CB, Kadier A. Modeling the batch and fixed bed adsorption of fluoride from aqueous solutions in using activated carbon from Acacia nilotica biochar 2022. https://doi.org/10.21203/rs.3.rs-1910602/v1.
[107] Chu KH. Breakthrough curve analysis by simplistic models of fixed bed adsorption: In defense of the century-old Bohart-Adams model. Chem Eng J 2020;380. https://doi.org/10.1016/j.cej.2019.122513.
[108] Bohart GS, Adams EQ. Some aspects of the behavior of charcoal with respect to chlorine. J Am Chem Soc 1920;42:523–44. https://doi.org/10.1021/ja01448a018.
[109] Cruz-Olivares J, Pérez-Alonso C, Barrera-Díaz C, Ureña-Nuñez F, Chaparro-Mercado MC, Bilyeu B. Modeling of lead (II) biosorption by residue of allspice in a fixed-bed column. Chem Eng J 2013;228:21–7. https://doi.org/10.1016/j.cej.2013.04.101.
[110] Hutchins RA. New method simplifies design of activated carbon systems. Chem Eng 1973;80:133–8.
[111] Largitte L, Pasquier R. A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon. Chem Eng Res Des 2016;109:495–504. https://doi.org/10.1016/j.cherd.2016. 02.006.
[112] Oladoja NA. A critical review of the applicability of Avrami fractional kinetic equation in adsorption-based water treatment studies. Desalination Water Treat 2016;57:15813–25. https://doi.org/10.1080/19443994. 2015.1076355.
[113] Rahman MM, Pal A, Uddin K, Thu K, Saha BB. Statistical analysis of optimized isotherm model for maxsorb III/ethanol and silica gel/water pairs. Evergreen 2018;5:1–12. https://doi.org/10.5109/2174852.
[114] Xiong P, He P, Qu Y, Wang L, Cao Y, Xu S, et al. The adsorption properties of NaY zeolite for separation of ethylene glycol and 1,2-butanediol: Experiment and molecular modelling. Green Energy Environ 2021;6:102–13. https://doi.org/10.1016/j.gee.2019.12.006.
[115] Chang Y-K, Chu L, Tsai J-C, Chiu S-J. Kinetic study of immobilized lysozyme on the extrudate-shaped NaY zeolite. Process Biochem 2006;41:1864–74. https://doi.org/10.1016/j.procbio.2006.03.039.
[116] Guo B, Wang Y, Qiao X, Shen X, Guo J, Xiang J, et al. Experiment and regeneration kinetic model study on CO2 adsorbent prepared from fly ash. Chem Eng J 2021;421. https://doi.org/10.1016/j.cej. 2020.127865.
[117] Serna-Guerrero R, Sayari A. Modeling adsorption of CO2 on amine-functionalized mesoporous silica. 2: Kinetics and breakthrough curves. Chem Eng J 2010;161:182–90. https://doi.org/10.1016/ j.cej.2010.04.042.
[118] Guo B, Wang Y, Qiao X, Shen X, Guo J, Xiang J, et al. Experiment and regeneration kinetic model study on CO2 adsorbent prepared from fly ash. Chem Engg Jl 2021;421. https://doi.org/10.1016/ j.cej.2020.127865.
[119] Revellame ED, Fortela DL, Sharp W, Hernandez R, Zappi ME. Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review. Clean Eng Technol 2020;1. https://doi.org/10.1016/j.clet.2020.100032.
[120] Meléndez‐Ortiz HI, Puente‐Urbina B, Mercado‐Silva JA, García‐Uriostegui L. Adsorption performance of mesoporous silicas towards a cationic dye. Influence of mesostructure on adsorption capacity. Int J Appl Ceram Technol 2019;16:1533–43. https://doi.org/10.1111/ijac.13179.
[121] Li K, Kress JD, Mebane DS. The Mechanism of CO2 Adsorption under Dry and Humid Conditions in Mesoporous Silica-Supported Amine Sorbents. J Phys Chem C 2016;120:23683–91. https://doi.org/10.1021/ acs.jpcc.6b08808.
[122] Yu J, Chuang SSC. The Role of Water in CO2 Capture by Amine. Ind Eng Chem Res 2017;56:6337–47. https://doi.org/10.1021/acs.iecr.7b00715.
[123] Han J, Kamber M, Pei J. Data mining: concepts and techniques. Morgan kaufmann; 2012. https://doi.org/10.1016/C2009-0-61819-5.

無法下載圖示
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE