簡易檢索 / 詳目顯示

研究生: 王克欽
Ke-Qin Wang
論文名稱: 使用SPADE模塊的BBDM模型在醫學影像轉換中的應用
Brownian Bridge Diffusion Models with SPADE in medical image translation
指導教授: 蘇順豐
Shun-Feng Su
口試委員: 姚立德
陳美勇
陸敬互
鍾聖倫
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2024
畢業學年度: 113
語文別: 英文
論文頁數: 71
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 摘要: 4 Abstract: 6 Acknowledgements: 8 Contents: 9 List of Figures: 12 List of Tables: 13 Chapter 1 Introduction: 1 1.1 Background: 1 1.2 Motivation: 4 1.3 Research Objective: 7 1.4 Thesis Contributions: 9 1.5 Thesis organization: 11 Chapter 2 Related Work: 14 2.1 Image Generation Model: 14 2.2 Deep Medical Image Synthesis: 15 2.3 Diffusion Model Training Optimization: 17 2.3.1 Diffusion Model in Medical Imaging: 19 2.3.2 ControlNet: 21 Chapter 3 Method: 23 3.1 Image Compression To Compute Latents: 24 3.1.1 Autoencoder: 25 3.1.2 SPADE: 27 3.2 Diffusion Model: 29 3.2.1 Traditional Diffusion Model: 29 3.2.2 Brownian Bridge Diffusion Model: 31 3.2.3 Model Architecture: 38 Chapter 4 Experiments: 44 4.1 Data: 44 4.2 Experiment Setup: 46 4.3 Implementation Details: 48 4.4 Results: 50 4.4.1 Comparison with ControlNet: 50 4.4.2 BBDM with SPADE: 52 4.4.3 Hyperparameter Tuning Experiments: 54 4.5 Discussion: 56 4.5.1 BBDM vs ControlNet: 57 4.5.2 SBBDM vs BBDM: 58 4.5.3 Parameter adjustment comparison: 59 Chapter 5 Conclusions: 62 5.1 Future Work: 64 References: 66

    [1] Y. Shen and M. Gao, “Brain Tumor Segmentation on MRI with Missing
    Modalities,” arXiv e-prints, p. arXiv:1904.07290, Apr. 2019.
    [2] T. Tong, K. Gray, Q. Gao, L. Chen, and D. Rueckert, “Multi-modal classification of alzheimer’s disease using nonlinear graph fusion,” Pattern
    Recognition, vol. 63, 10 2016.
    [3] S. Bakas, H. Akbari, A. Sotiras, M. Bilello, M. Rozycki, J. Kirby,
    J. Freymann, K. Farahani, and C. Davatzikos, “Advancing the cancer
    genome atlas glioma mri collections with expert segmentation labels and
    radiomic features,” Scientific Data, vol. 4, 09 2017.
    [4] B. H. Menze, A. Jakab, et al., “The multimodal brain tumor image segmentation benchmark (brats),” IEEE Transactions on Medical Imaging,
    vol. 34, no. 10, pp. 1993–2024, 2015.
    [5] S. H. Patel, L. M. Poisson, D. J. Brat, et al., “T2–flair mismatch, an
    imaging biomarker for idh and 1p/19q status in lower-grade gliomas: Atcga/tcia project,” Clinical Cancer Research, vol. 23, pp. 6078 – 6085,
    2017.
    [6] J. Bao, D. Chen, F. Wen, H. Li, and G. Hua, “CVAE-GAN: Fine-Grained
    Image Generation through Asymmetric Training,” arXiv e-prints,
    p. arXiv:1703.10155, Mar. 2017.
    [7] A. Razavi, A. van den Oord, and O. Vinyals, “Generating diverse
    high-fidelity images with vq-vae-2,” in Neural Information Processing
    Systems, 2019.
    [8] Z. Kong, W. Ping, J. Huang, K. Zhao, and B. Catanzaro, “Diffwave:
    A versatile diffusion model for audio synthesis,” ArXiv, vol. abs/
    2009.09761, 2020.
    [9] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
    A. Graves, N. Kalchbrenner, A. W. Senior, and K. Kavukcuoglu,
    “Wavenet: A generative model for raw audio,” ArXiv, vol. abs/
    1609.03499, 2016.
    [10] X. L. Li, J. Thickstun, I. Gulrajani, P. Liang, and T. Hashimoto,
    “Diffusion-lm improves controllable text generation,” ArXiv, vol. abs/
    2205.14217, 2022.
    [11] D. Nie, R. Trullo, J. Lian, L. Wang, C. Petitjean, S. Ruan, Q. Wang, and
    D. Shen, “Medical image synthesis with deep convolutional adversarial networks,” IEEE Transactions on Biomedical Engineering, vol. 65,
    no. 12, pp. 2720–2730, 2018
    [12] W. H. L. Pinaya, M. S. Graham, E. Kerfoot, P.-D. Tudosiu, J. Dafflon,
    V. Fernandez, P. Sanchez, J. Wolleb, P. F. da Costa, A. Patel, H. Chung,
    C. Zhao, W. Peng, Z. Liu, X. Mei, O. Lucena, J. C. Ye, S. A. Tsaftaris, P. Dogra, A. Feng, M. Modat, P. Nachev, S. Ourselin, and M. J.
    Cardoso, “Generative AI for Medical Imaging: extending the MONAI
    Framework,” arXiv e-prints, p. arXiv:2307.15208, July 2023.
    [13] A. Kazerouni, E. Khodapanah Aghdam, M. Heidari, R. Azad,
    M. Fayyaz, I. Hacihaliloglu, and D. Merhof, “Diffusion models in
    medical imaging: A comprehensive survey,” Medical Image Analysis,
    vol. 88, p. 102846, 05 2023.
    [14] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” ArXiv, vol. abs/2006.11239, 2020.
    [15] Y. Song, J. N. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and
    B. Poole, “Score-based generative modeling through stochastic differential equations,” ArXiv, vol. abs/2011.13456, 2020.
    [16] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “HighResolution Image Synthesis with Latent Diffusion Models,” arXiv
    e-prints, p. arXiv:2112.10752, Dec. 2021.
    [17] B. Li, K. Xue, B. Liu, and Y.-K. Lai, “BBDM: Image-to-image
    Translation with Brownian Bridge Diffusion Models,” arXiv e-prints,
    p. arXiv:2205.07680, May 2022.
    [18] L. Zhang, A. Rao, and M. Agrawala, “Adding Conditional Control to
    Text-to-Image Diffusion Models,” arXiv e-prints, p. arXiv:2302.05543,
    Feb. 2023.
    [19] T. Park, M.-Y. Liu, T.-C. Wang, and J.-Y. Zhu, “Semantic Image Synthesis with Spatially-Adaptive Normalization,” arXiv e-prints,
    p. arXiv:1903.07291, Mar. 2019.
    [20] J. Kim and H. Park, “Adaptive Latent Diffusion Model for 3D Medical
    Image to Image Translation: Multi-modal Magnetic Resonance Imaging
    Study,” arXiv e-prints, p. arXiv:2311.00265, Oct. 2023.
    [21] S. Bakas, M. Reyes, A. Jakab, et al., “Identifying the Best Machine
    Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge,”
    arXiv e-prints, p. arXiv:1811.02629, Nov. 2018.
    [22] J. Choi, S. Kim, Y. Jeong, Y. Gwon, and S. Yoon, “ILVR: Conditioning
    Method for Denoising Diffusion Probabilistic Models,” arXiv e-prints,
    p. arXiv:2108.02938, Aug. 2021.
    [23] F.-A. Croitoru, V. Hondru, R. T. Ionescu, and M. Shah, “Diffusion models in vision: A survey,” IEEE Transactions on Pattern Analysis and
    Machine Intelligence, vol. 45, p. 10850–10869, Sept. 2023.
    [24] W. Li, Y. Li, W. Qin, X. Liang, J. Xu, J. Xiong, and Y. Xie, “Magnetic
    resonance image (mri) synthesis from brain computed tomography (ct)
    images based on deep learning methods for magnetic resonance (mr)-
    guided radiotherapy,” Quantitative Imaging in Medicine and Surgery,
    vol. 10, pp. 1223–1236, 06 2020.
    [25] Q. Lyu and G. Wang, “Conversion Between CT and MRI Images Using Diffusion and Score-Matching Models,” arXiv e-prints,
    p. arXiv:2209.12104, Sept. 2022.
    [26] J. Song, C. Meng, and S. Ermon, “Denoising Diffusion Implicit Models,” arXiv e-prints, p. arXiv:2010.02502, Oct. 2020.
    [27] G. Batzolis, J. Stanczuk, C.-B. Schönlieb, and C. Etmann, “Conditional
    Image Generation with Score-Based Diffusion Models,” arXiv e-prints,
    p. arXiv:2111.13606, Nov. 2021.
    [28] P. Esser, R. Rombach, and B. Ommer, “Taming Transformers for HighResolution Image Synthesis,” arXiv e-prints, p. arXiv:2012.09841, Dec.
    2020.
    [29] A. Van Den Oord, O. Vinyals, et al., “Neural discrete representation learning,” Advances in neural information processing systems, vol. 30,
    2017.
    [30] M. Ning, E. Sangineto, A. Porrello, S. Calderara, and R. Cucchiara, “Input Perturbation Reduces Exposure Bias in Diffusion Models,” arXiv
    e-prints, p. arXiv:2301.11706, Jan. 2023.
    [31] X. Yi, E. Walia, and P. Babyn, “Generative adversarial network in medical imaging: A review,” Medical Image Analysis, vol. 58, p. 101552,
    Dec. 2019.
    [32] I. Loshchilov and F. Hutter, “Decoupled Weight Decay Regularization,”
    arXiv e-prints, p. arXiv:1711.05101, Nov. 2017.

    無法下載圖示
    全文公開日期 2029/10/14 (校外網路)
    全文公開日期 2029/10/14 (國家圖書館:臺灣博碩士論文系統)
    QR CODE