簡易檢索 / 詳目顯示

研究生: 李家豪
Gi-Hou Lee
論文名稱: 環氧壓克力系樹脂光硬化行為與光學性質之研究
The Influence of Curing Behaviors and Optical Performance on Epoxy Acrylic Photo-Cruing Resin
指導教授: 邱顯堂
Hsien-Tang Chiu
口試委員: 李俊毅
Jiunn-Yih Lee
邱士軒
Shih-Hsuan Chiu
鄭國彬
K. B. Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 106
中文關鍵詞: 光穿透率可視角霧度光硬化壓克力超音波光澤度
外文關鍵詞: transmittance, acrylic, Haze, visual angle, Photo curing, ultrasonic, degree of luster
相關次數: 點閱:256下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討利用高透明性環氧壓克力光硬化性樹脂(Difunctional epoxy acrylate oligomer;M-6210)、光起始劑(2-Benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1;I-369)、反應性稀釋劑(Tripropylene Glycol Diacrylate,產品型號:TPGDA)所形成的最適配比作為樹脂基材,並加入微粒子之光學改質劑,探討不同形態之微粒子含量及種類之超音波分散性及光學特性,首先以剛性擺錘振動減衰儀(Rigid body Pendulum Rheometer Tester;RPT)探討光硬化性樹脂最適配比後,取適當比例分別添加PMMA、PS、SiO2、TiO2微粒子以RPT行光硬化行為測定,再以超音波分散儀加工搭配四種微粒子,利用微粒子折射率的差異性與多層間的搭配,經由光學儀器量測出霧度、可視角、光澤度、光穿透率…等光學性質以探討其對光學膜的影響效應。
     實驗結果發現,微粒子在純水中較易於分散,在非離子界面活性劑之水浴中則因被疏水基團包覆而易於團聚(Agglomeration),當添加在高黏度樹脂時,則微粒子分散後受黏度之牽制作用而不易團聚。PMMA、SiO2、PS微粒子由於透光性高,所以微粒子添加量對於光硬化速率無影響,而片狀之TiO2由於吸光性較大,故在TiO2添加量為50%時經由剛性擺錘振動減衰儀之測試須長達六小時才完成硬化。另一方面由於PS微粒子會吸收溶劑,導致在PS添加量為50wt%時,其網目被撐開而令網目密度較為稀疏。
    在光學性質量測由於PMMA粒子與樹脂同屬壓克力系,故光散射效果為最差,致使最終霧度值較低,霧度值隨光學膜層厚度增加而增加,光穿透率隨光學膜內微粒子含量愈高而降低,尤其以TiO2光學膜最為明顯,在可視角量測方面則以TiO2微粒子含量愈高或層數愈多所得值愈高,光澤度以有規則微粒子所形成的PMMA膜與PS膜所得值較佳。


    The purpose of this research is to determine which is the most suitable base material for resins by examining several substances like the highly transparent difunctional epoxy acrylate oligomer; M-6210), 2 – Benzyl – 2 – dimethylamino – 1 - (4-morpholinophenyl) – butanone - 1; I-369), Tripropylene Glycol Diacrylate (product model: TPGDA). In addition, we shall attempt to bring in optically transformed particles and discuss the content and classification of their various forms, as well as their ultrasonic wave dispersion and optical properties. We proceed by subjecting the substances to a Rigid Body Pendulum Rheometer Tester or RPT in order to determine which is the most suitable for the epoxy acrylate oligomer. Afterwards, we begin to distinguish the appropriate ratio of PMMA, PS, SiO2, TiO2 particles by identifying their solidifying conduct through the RPT. Four types of processed particles were dispersed by means of the ultrasonic waves while using variations of particle refractive indices and multi-level groups. Haze, visual angle, degree of luster, transmittance, and other optical properties were measured via optics instruments so as to analyze the influences and effects of focused optic membranes.
    The experiment results showed that the particles easily dispersed in pure water. On the other hand in a non-ionic surface with active agents, the water bath activity manifested swift agglomeration as a result of sparse water groups and bases. When incorporated in a high viscosity resin, particles began to disperse while resisting the viscosity of the fluid and thus, making it difficult to agglomerate. Due to the high diaphaneity of PMMA, SiO2, and PS particles, the addition of particles did not pose any effect on the light hardening speed. In another experiment, 50% of TiO2 was added in, the greater ability of TiO2 sheets to absorb light caused it to harden only after 6 hours of RPT. On the other hand, since PS particles are able to absorb solvents, the mesh density became a bit more dispersed when the mesh was propped open and after 50wt% of PS was added in.
    In measuring optic properties, since PMMA particles and resin have similar acrylic fiber, the light scattering effects will be most unfavorable causing a low final fog value. Fog value rises when the thickness level of the optic membrane increases, and goes down when the transparency rate of the inner particles of the optic membrane increases. This is especially evident in TiO2 particles when the visual angle is being measured; when the number of particles and the number of layers are higher, the values obtained from the PMMA and PS membranes formed by the particles are more favorable by virtue of the luster principle.

    中文摘要.........................Ⅰ 目錄...........................Ⅲ 第一章 緒論.....................1 第二章 文獻回顧.....................3 2.1 光學基本定理.....................3 2.1.1 光的本質......................3 2.1.2 光度學術語.....................4 2.1.3 光波........................5 2.1.4 折射定律......................7 2.1.5 反射定律......................8 2.1.6 全反射(Total Internal Reflection)現象......8 2.1.7 光散射.......................9 2.1.8 光繞射.......................9 2.1.9 反射與漫反射...................10 2.1.10 抗眩光......................10 2.2 光學膜應用.....................10 2.2.1 抗反射膜.....................10 2.2.2 抗眩膜......................11 2.2.3 擴散膜......................12 2.2.4 偏光膜......................13 2.3 光硬化樹脂之源起..................14 2.3.1 光硬化樹脂組成及光硬化行為之測定......16 2.3.1.1 光硬化樹脂組成.................16 2.3.1.2 硬化反應速率的測試方法有下列幾種:.......19 2.3.1.3 影響光硬化樹脂反應速率因素...........20 2.3.1.4 光硬化樹脂硬化行為...............23 2.4 微粒子之分散技術..................25 2.4.1 機械式攪拌....................25 2.4.2 超音波分散....................25 2.4.3 界面活性劑....................26 2.4.4 粉體粒徑量測設備.................26 2.5 界面活性劑種類與表面張力原理及測定方法.......27 2.5.1 界面活性劑種類..................27 2.5.2 表面張力原理...................29 2.5.3 臨界微胞濃度(CMC)測定方法............29 2.6 參考文獻......................31 第三章 超音波之微粒子分散性及環氧壓克力樹脂光硬化行為之研究............................38 摘要...........................38 3.1 前言........................39 3.2 實驗........................40 3.2.1 超音波分散....................40 3.3.2 粒徑分析.....................41 3.2.3 RPT光硬化行為測定................42 3.2.4 鑑定與分析....................43 3.3 結果與討論.....................43 3.3.1 超音波之微粒子分散性探討.............43 3.3.1.1 微粒子種類、型態效應..............43 3.3.1.2 溶劑效應....................43 3.3.1.3 界面活性劑效應.................44 3.3.1.4 樹脂效應....................45 3.3.2 光硬化行為之探討.................45 3.3.2.1 光起始劑含量之影響效應.............45 3.3.2.2 微粒子種類之影響效應..............47 3.3.2.3 微粒子含量之影響效應..............47 3.5 結論........................49 3.8 參考文獻......................51 第四章 環氧壓克力光硬化樹脂單、複層膜對光學性質影響效應之研究............................61 摘要...........................61 4.1 前言........................62 4.2 實驗........................63 4.2.1 材料與試片製備..................63 4.2.2 測試.......................64 4.3 結果與討論.....................66 4.3.1 微粒子對於單層膜光學性質影響之探討........66 4.3.2 微粒子對複層膜之影響效應.............67 4.4 結論........................71 4.5 參考文獻......................72 第五章 總結論......................90 圖表索引 圖2-1 光波長對照表...................33 圖2-2 光由光疏介質通過光密介質之折射現象圖解......33 圖2-3 折射現象圖解...................33 圖2-4 全反射之臨界角..................34 圖2-5 圖(a)當微粒子與樹脂折射率相同時光行徑路線...34 圖(b)當微粒子與樹脂折射率不同時光散射現象...34圖2-6 雙狹縫繞射(a)干涉(b)試驗.............35 圖2-7 反射與漫反射...................35 圖2-8 抗眩原理圖....................35 圖2-9 擴散膜光擴散原理圖................36 圖2-10 LCD用偏光膜構造.................36圖2-11 含碘之吸光型偏光膜...............36圖2-12 攪拌葉片種類..................37 圖3-1 剛性擺錘振動減衰儀之簡圖..............53圖3-2 剛性擺錘振動減衰儀(Rigid-Body Pendulum Rheometer)測定硬化行為典型之硬化曲線圖..................53 圖3-3 振動頻率減衰率圖.................53 圖3-4 雷射繞射粒徑分析儀光學原理圖...........54 圖3-5 剛性擺錘振動減衰儀探討光起始劑硬化條件 .... 54 圖3-6 剛性擺錘振動減衰儀測定光硬化樹脂硬化條件....54 圖3-7 PMMA在不同溶劑比較圖..............54 圖3-8 PS在不同溶劑比較圖...............54 圖3-9 SiO2在不同溶劑比較圖..............55 圖3-10 TiO2在不同溶劑比較圖..............55 圖3-11 四種微粒子在水中分散圖.............55 圖3-12 四種微粒子在含界面活性劑的水中粒徑圖......55 圖3-13 四種微粒子在樹脂中分散圖............55 圖3-14 左上圖為PMMA的SEM粒徑圖,右上圖為PS的SEM粒徑圖...56      左下圖為SiO2的SEM粒徑圖,右下圖為TiO2的SEM粒徑圖 圖3-15 不同PMMA微粒子含量光硬化曲線圖.........55 圖3-16 不同SiO2微粒子含量光硬化曲線圖.........56 圖3-17不同PS微粒子含量光硬化曲線圖..........56 圖3-18 不同TiO2微粒子含量光硬化曲線圖.........56 圖3-19 TiO2微粒子 50%RPT光硬化行為...........56 圖3-20 PMMA與TiO2粒子在20%含量時光硬化曲線圖.....57 圖3-21 在不同超音波振頻下的溫度曲線圖.........57 圖3-22 光起始劑分別以0.5∼2%添加至稀釋單體之溶解圖...57 圖3-23 PMMA微粒子在純水中左圖為未經超音波振盪,右圖為經超音波振盪粒徑分佈圖....................57 圖3-24 PS微粒子在純水中左圖為未經超音波振盪,右圖為經超音波振盪粒徑分佈圖.....................58 圖3-25 SiO2微粒子在純水中左圖為未經超音波振盪,右圖為經超音波振盪粒徑分佈圖.....................58 圖3-26 TiO2微粒子在純水中左圖為未經超音波振盪,右圖為經超音波振盪粒徑分佈圖.....................58 圖4-1 光學薄膜製備圖..................73 圖4-2 霧度儀概要圖...................73 圖4-3 可視角量測原理..................74 圖4-4 可視角的能量變化圖................74 圖4-5 光澤度計測試原理圖................74 圖4-6 微粒子在不同添加量的光穿透率...........75 圖4-7 微粒子含量對於光學霧度影響效應..........75 圖4-8 微粒子含量對於光散射影響效應...........75 圖4-9 以PMMA20wt%光學膜為底層之雙層結構對光學穿透度影響75 圖4-10 以PMMA20wt%光學膜為底層之雙層結構對光學散射影響.75 圖4-11 以PMMA20wt%光學膜為底層之雙層結構對光學霧度影響.75 圖4-12 以PS20wt%光學膜為底層之雙層結構對光學穿透度影響.76 圖4-13 以PS20wt%光學膜為底層之雙層結構對光學散射影響..76 圖4-14 以PS20wt%光學膜為底層之雙層結構對光學霧度影響..76 圖4-15 以SiO220wt%光學膜為底層之雙層結構對光學穿透度影響76 圖4-16 以SiO220wt%光學膜為底層之雙層結構對光學散射影響.76 圖4-17 以SiO220wt%光學膜為底層之雙層結構對光學霧度影響.76 圖4-18 以TiO220wt%光學膜為底層之雙層結構對光學穿透度影響77 圖4-19 以TiO220wt%光學膜為底層之雙層結構對光學散射影響.77 圖4-20 以TiO220wt%光學膜為底層之雙層結構對光學霧度影響.77 圖4-21 PMMA20wt%與TiO220wt%單層結構對光學效應之影響..77 圖4-22 PMMA20wt%與TiO220wt%雙層結構對光學效應之影響..77 圖4-23 PMMA20wt%層數結構對光學效應之影響........77 圖4-24 TiO220wt%層數結構對光學效應之影響........78 圖4-25 PMMA20wt%與TiO220wt%三層膜組合對光學效應之影響.78 圖4-26 PMMA20wt%與TiO220wt%四層膜組合對光學效應之影響.78 圖4-27 左上圖為PMMA20%的SEM粒徑圖,右上圖為PMMA30%的SEM粒徑圖78 左下圖為PMMA40%的SEM粒徑圖,右下圖為PMMA50%的SEM粒徑圖 圖4-28 左上圖為PS20%的SEM粒徑圖,右上圖為PS30%的SEM粒徑圖..79 左下圖為PS40%的SEM粒徑圖,右下圖為PS50%的SEM粒徑圖 圖4-29 左上圖為SiO220%的SEM粒徑圖,右上圖為SiO230%的SEM粒徑圖.79 左下圖為SiO240%的SEM粒徑圖,右下圖為SiO250%的SEM粒徑圖 圖4-30 左上圖為TiO220%的SEM粒徑圖,右上圖為TiO230%的SEM粒徑圖80 左下圖為TiO240%的SEM粒徑圖,右下圖為TiO250%的SEM粒徑圖 圖4-31 以PMMA膜為底層之雙層搭配效應對穿透率影響....80 圖4-32 以TiO2膜為底層之雙層搭配效應對穿透率影響....81 圖4-33 以SiO2膜為底層之雙層搭配效應對穿透率影響....81 圖4-34 以PS膜為底層之雙層搭配效應對穿透率影響.....82 圖4-35 彙整圖4-28∼圖4-31在波長589nm光穿透率綜合比較圖82 圖4-36 PMMA微粒子含量效應對穿透率影響.........83 圖4-37 PS微粒子含量效應對穿透率影響..........83 圖4-38 SiO2微粒子含量效應對穿透率影響..........84 圖4-39 TiO2微粒子含量效應對穿透率影響..........84 圖4-40 PMMA膜厚度效應對穿透率影響...........85 圖4-41 TiO2膜厚度效應對穿透率影響...........85 圖4-42 三層光學膜組合效應對穿透率影響.........86 圖4-43 四層光學膜組合效應對穿透率影響.........86 表2-1 感光性壓克力系預聚合體之比較...........37 表2-2 單體/寡聚合物官能基與性能之關連.........37 表3-1 光起始劑與稀釋單體配比..............59 表3-2 光硬化樹脂配比..................59 表3-3 光硬化樹脂最佳配比下的各種粒子黏度表.......59 表3-4 光硬化性樹脂添加微粒子各含量配比.........60 表3-5 光硬化樹脂最佳配比下的各種粒子黏度表.......60 表4-1 霧度儀原理....................87 表4-2 以霧度計、可視角量測儀、光澤度計量測各種光學膜單層、雙層數據.........................88 表4-3 以霧度計、可視角量測儀、光澤度計量測各種光學膜參、肆層數據..........................89

    2.6 參考文獻
    1.內尾舜二著,實用塑膠透鏡,台灣復文興業,民國八十八年
    2.蔡俊欽, “導光板光學設計及製程之最佳化研究”,國立高雄應用科技大學碩士論文, 2004
    3.郭惠隆,“LCD用光學薄膜”,化工技術第3期(2002)
    4.張永漢,“精密塗佈技術在平面顯示器光學膜之應用簡介”,工業材料211期(2004)
    5.Aicha Elshabini-Riad & Fred D. Barlow Ⅲ “Thin Film Technology Handbook” The McGraw-Hill, Inc, 1998.
    6.M. Kuhr, S. Bauer, U. Roth., D. Wolff, Thin Solid Film, 442, 107-116(2003)
    7.H. Hu, P. K. Nair, Surface and Coatings Technology, 81, 183-189(1996)
    8.Francis Weston Sears,“Principles of Physics Series Optical”,1986.
    9.MURAYAMA et al , ”Transmission Screen”, European Patent Application, 2001.
    10.M. B. van der Mark, M. P. Van Albada and A. Lagendijk,“Light scattering in strongly scattering media: Multiple scattering and weak localization”, Phy. Rev. B, Vol.37, 1988.
    11.Eugene Hecht,“Optics”, Addison-Wesley, third edition, 1998.
    12.兩兆雙星計劃,經濟部投資業務處,http://www.investintaiwan.nat.gov/
    13.淺見 高著,“亞克力塑膠Acrylic原理與實用”,復漢出版社,P6-9,民國八十八年
    14.C. C. Lee, J. C. Hsu, C. C. Jaing, Thin Solid Film, 295, 122-124(1997)
    15. http://66.102.7.104
    16.Fredrizzi, L.; Deflorian, F.; Boni, G.; Bonora, P. L. and Pasini, E.; EIS Study of Environmentally Friendly Coil Coating Performnaces, Prog. Org. Coatings, 29, 89-96(1996)
    17. D. R. Bauer, D. F. Mielewski, J. L. Gerlock, Photooxidation kinetics in crosslinked polymer coatings. Polymer Degradation and Stability 38, 57-67(1992)
    18.C. Decker, S. Biry, Light stabilization of polymers by radiation cured acrylic coatings. Progress in Organic Coatings 29,81-87(1996)
    19.J. Pospišil, S. Nešpurek, “Photostabilization of coatings”, Mechanisms and performance Progress In Polymer Science, 25, 1261-1335(2000)
    20.C.Decker and B.Elzaouk,”Laser-induced crosslinking polymerization of acrylic photoresist”,J.Appl. Polym. Sci,65,p833(1997).
    21.G. Gozzelino, G. Malucelli, V. Lambertini, J. appl. polym. sci., 78, 458(2000)
    22.T. Yilmaz, O. Ozarslan, E. Yildiz, A. Kuyulu, E. Ekinci, J. appl. polym. sci., 69, 1837(1998)
    23. J. Huang, X. Huang, H. Liu, J. appl. polym. sci., 65, 2095(1997)
    24.J. P. Fouassier, “Photoinitiation, photopolymerization, and photocuring”, Fundamentals and application, Hanser publishers, Munich Vienna New York, 1995
    25.M. Tokumixu, M. Sato, in: Proceedings of the Radtech Asia Conference, 492(1993)
    26.B. L. Lee, J. Appl. Polym. Sci. 47, 587(1983)
    27.J. W. Hong, H. K. Kim, J. A. Yu, Y. B. Kim, J. Appl. Polym. Sci., 84, 132-137(2002)
    28.J. C. Bolger, S. L. Moraro, “Conductive adhesives: how and where they work”, Adhesives Age, 27, p. 17(1984)
    29.H. K. Kim, H. T. Ju, J. W. Hong, Europ. Polym. Journal, 39, 2235-2241(2003)
    30.M. Schadt, S. V. Belayev, M. I. Barnik, Jpn. J. Appl. Phys. , 29, L634(1990)
    31.S. K. Medda, D. Kundu, G. De, Journal of Non-Crystalline Sokids, 318, 149-156(2003)
    32.M. Mennig, P. W. Oliveira, A. Frantzen. H. Schmidt, Thin Solid Films, 351, 225-229(1999)
    33.Y. Koike, S. Matsuoka, H. E. Bair, Macromolecules, 25, 4807(1992).
    34.R. E. Judd and B. Crist: J. Polym. Sci., Polum, Lett. Ed., 18, 717(1980)
    35.B. Crist and M. Marhic, SPIE, 297, 169(1981)
    36.Y. Koile, N. Tanio and Y. Otsuka, Maromolecules, 22, 1367(1989)
    37.蔡奇澄,國立台灣工業技術學院工程技術研究所碩士論文, 1993
    38.Gozzelino, G; Malucelli, G; Lambertini, V., J. appl. polym. sci., 78, 458(2000).
    39.Yilmaz, Tulay; Ozarslan, Ozdemir; Yildiz, Emel; Kuyulu, Abdulkadir; Ekinci, Ekrem, J. appl. polym. sci., 69, 1837(1998)
    40.Huang, Jumlian; Huang, Xiaoyu; Liu, Hui, J. appl. polym. sci., 65, 2095(1997)
    41.C. G. Roffey, Photopolymerization of Surface Coating, John Wiley & Sons, p161(1982)
    42.Norman S. Allen, “Developments in polymer photochemistry”, Applied Science Publisher, (1982)
    43.Ruhlmann, D.; Fouassier, J. P.; Wieder, F., Eur. Polym. j., 28, 591(1992).
    44.Ruhlmann, D.; Fouassier, J. P.; Wieder, F., Eur. Polym. j., 27, 991(1991)
    45.Ruhlmann, D.; Fouassier, J. P.; Schnabel, Eur. Polym. j., 28, 287(1992)
    46.R. Holman and P. Oldring, UV & EB Curing Formulation for Printing Inks Coatings & Paints, Selective Industrial Training Associates Limted, U. K. P14 (1988)
    47.Davidenko, Natalia;Peniche, Carlos;Sastre, Roberto;San Roman, Julio, Polymer, 39, 917(1998)
    48.J. P. Fouassier, ”Photoinitiation, photopolymerization, and photocuring:fundamentals and application”, Hanser Publishers, Munich Vienna New York(1995).
    49.J. L. Gerlock, L. M. Briggis, D. R. Bauer, Photostability of acrylic/melamine enamels, 15, 197-208(1987)
    50.Beasley, John, Adhes. age. , 40, 20(1997)
    51.彭志成, 國立台灣大學化學工程研究所碩士論文,12, 1999
    52.C. G.,光聚合高分子材料及應用,科學技術文獻出版社,1990
    3.8 參考文獻
    1.De Villiwes, M. Melgardt, Journal of Pharmaceutical and Biomedical Analysis, 13, 191-198(1995)
    2.D. W. Friedman, "The Interation Mechanism Between Cavitation Bubbles and Particle of the Solid and Liquid Phases," Ultrasonic, 10, 162-172(1972)
    3.U. Teipel, K. Leisinger, I. Mikonsaari, International Journal of Mineral Processing 74, 183-190(2004).
    4.U. Tei., K. Lei., I. Mik., International Journal of Mineral Processing, 74, 183-190(2004)
    5.De Villiwes, M. Melgardt, Journal of Pharmaceutical and Biomedical Analysis, 13, 191-198(1995)
    6.C. S. Lee, J. S. Lee, S. T. Oh, Materials Letters, 57, 2643-2646(2003)
    7.Ping. He, Ultrasonics, 37, 67-70(1999)
    8.I. Eri., R. D. B. Lef., G. J. Bla., Soil Biology & Biochemistry, 27,1005-1010(1995)
    9.D. I. Hib., B. H. Rob., M. M. Rob., Colloids and surfaces B:biointerfaces, 12, 359-371(1999)
    10.R. E. Cha., R.P. Coc., A. K. Hol., Ultrasonics, 34, 355-361(1996)
    11.Y. Yang, J. Lan, X. Li, Materials Science and Engineering: A, 380, 378-383(2004)
    12.C. S. Lee, J. S. Lee, S. T. Oh, Materials Letters, 57, 2643-2646(2003)
    13.A. Ruiz, P. B. Nagy, Ultrasonics, 42, 665-669,(2004)
    14.W. Gao, C. Glo., J. Tho., 41, 219-228(2003)
    15.Gozzelino,G.;Malucelli,G;Lambertini,V.,J.appl.polym.sci.,78,458(2000)
    16.Yilmaz,Tulay;Ozarslan,Ozdemir;Yildiz,Emel;Kuyulu,Abdulkadir;Ekinci,Ekrem ,J.appl.polym.sci.,69,1837(1998)
    17.Huang,Junlian;Huang,Xiaoyu;Liu,Hui,J.appl.polym.sci.,65,2095(1997)
    18.Gozzelino, G; Malucelli, G; Lambertini, V., J. appl. polym. sci., 78, 458(2000).
    19.Yilmaz, Tulay; Ozarslan, Ozdemir; Yildiz, Emel; Kuyulu, Abdulkadir; Ekinci, Ekrem, J. appl. polym. sci., 69, 1837(1998)
    20.Huang, Jumlian; Huang, Xiaoyu; Liu, Hui, J. appl. polym. sci., 65, 2095(1997)
    21.C. G. Roffey, Photopolymerization of Surface Coating, John Wiley & Sons, p161(1982)
    22.Norman S. Allen, “Developments in polymer photochemistry”, Applied Science Publisher, (1982)
    23.J. P. Fouassier, ”Photoinitiation, photopolymerization, and photocuring:fundamentals and application”, Hanser Publishers, Munich Vienna New York(1995).
    24.J. L. Gerlock, L. M. Briggis, D. R. Bauer, Photostability of acrylic/melamine enamels, 15, 197-208(1987)
    25.Tanaka, Coating Films evaluation of physical property, Ricogaka Publish(1993)
    26.T. Tanaka, “Proceedings of The International Pressure Sensitive Adhesive Technoforum”, Japan, 143(1997)
    27.HSIEN-TANG CHIU, JYH-HORNG WU, Journal Applied Polymer Science, 89, 958-970(2003)
    28.HSIEN-TANG CHIU, JYH-HORNG WU, Journal Polymer Research., 11, 247-255(2004)
    29.HSIEN-TANG CHIU, JYH-HORNG WU, J. Appl. Polym. Sci., 2005
    4.5 參考文獻
    1.M. Schadt, S. V. Belayev, M. I. Barnik, Jpn. J. Appl. Phys. , 29, L634(1990)
    2.蔡俊欽,“導光板光學設計及製程之最佳化研究”,國立高雄應用科技大學碩士論文,(2004)
    3.T. Oku., A. Tag., Y. M. Hor., H. Suz., Applied Physics Letters, 83, 2515-2517(2003)
    4.A. Tag., Y. Koi., MACROMOLECULAR SYMPOSIA, 154, 73-82(2000)
    5.Francis Weston Sears,“Principles of Physics Series Optical”,1986.
    6.MURAYAMA et al , ”Transmission Screen”, European Patent Application, 2001.
    7.M. B. van der Mark, M. P. Van Albada and A. Lagendijk,“Light scattering in strongly scattering media: Multiple scattering and weak localization”, Phy. Rev. B, Vol.37, 1988.
    8.Eugene Hecht,“Optics”, Addison-Wesley, third edition, 1998.
    9.C. S. Lin, W. Z. Wu, Y. L. Lay, M. W. Chang, Optics and Laser Technology, 33, 499-505(2001)
    10.Beasley, John, Adhes. age. , 40, 20(1997).
    11.H. Ari., K. Fui., T. Kan., K. Inc., Dental Materials, 14, 405-411(1998)
    12.M. K. Kim, J. B. Jang, S. W. Cho, H. S. Ju, Current Applied Physics, 5, 64-66(2005)
    13.Mori, S. Fuk., Y. Tak., Surface and Coatings Technology, 140, 122-127(2001)
    14.K. Lum., J. Rah., J. W. Hov., Icarus, 126, 455-469(1997)
    15.G. Arun, V. K. Sha., A. Kap., K. N. Tri., Optics and Laser Technology, 34,395-398(2002)
    16.S. K. Medda, D. Kundu, G. De, Journal of Non-Crystalline Sokids, 318, 149-156(2003)
    17.M. Mennig, P. W. Oliveira, A. Frantzen. H. Schmidt, Thin Solid Films, 351, 225-229(1999)
    18.Y. Koike, S. Matsuoka, H. E. Bair, Macromolecules, 25, 4807(1992).
    19.R. E. Judd and B. Crist: J. Polym. Sci., Polum, Lett. Ed., 18, 717(1980)
    20.B. Crist and M. Marhic, SPIE, 297, 169(1981)
    21.Y. Koile, N. Tanio and Y. Otsuka, Maromolecules, 22, 1367(1989)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE