研究生: |
王謙 Wang Chien |
---|---|
論文名稱: |
基於無感測器之 模型式Delta機械手臂故障偵測 Sensorless Model-based Fault Detection of Delta Robot |
指導教授: |
劉孟昆
Meng-Kun Liu 藍振洋 JHEN-YANG LAN |
口試委員: |
郭俊良
Chun-Liang Kuo 陳羽薰 CHEN,YU-SYUN |
學位類別: |
碩士 Master |
系所名稱: |
工程學院 - 機械工程系 Department of Mechanical Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 115 |
中文關鍵詞: | 故障檢測 、參數識別 、Delta robot |
外文關鍵詞: | Fault detection, Parameter identification, Delta robot |
相關次數: | 點閱:598 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究提出了一個基於無感測器的並聯式機械手臂故障偵測方法,在不加裝額外感測器的前提下,僅需量測馬達驅動器、編碼器及扭矩之資訊,再搭配比例‒微分控制器(PD controller)即能偵測系統故障,並實作Delta手臂進行驗證。首先建立Delta手臂的運動學及動力學模型,接著使用傅立葉級數軌跡及最小平方法識別其動力學模型參數。本研究假設在正常狀態下所識別之參數為常態分布(normal distribution),一旦系統發生故障,則其相對應的參數分布將會偏離99%的信賴區間,並以t檢定的P值量化參數在正常及異常分布下的差異,達到故障偵測及識別(fault detection and identification)的效果。實驗證明本方法可在不需要事前蒐集故障案例的情形下,即可成功的偵測Delta手臂的質量不平衡及球窩接頭磨損,並量化其嚴重程度。
This research introduce a method to detect the fault based on the sensorless delta robot under the premise of without additional sensor. the information of the motor driver, encoder and torque are needed to detect the fault of the system with the PD controller, including the practical verification, first of all, create the dynamic and kinematic model of the Delta robot, then using least square method and fourier series trajectory to identify the parameter of the model. In this research, we made the assumption that the parameter which is identified under normal condition is in the normal distribution. once the fault is occur in the system, the related distribution of the parameter will fall outside 99% confidence interval, by using t-test to find out the p value which can be used to quantized parameter under normal or abnormal distribution, the goal of fault detection can be reached. from the experiment, we proof that it is possible to detect the mass unbalance and the wear of the ball and socket joint and quantized the level of the severity without collecting the fault cases before hand.
[1].Torsten, Söderström; Stoica, P. System identification. New York: Prentice Hall. 1989.
[2].Martin L. Leuschen, et al.(2002).”Robotic Fault Detection Using Nonlinear Analytical Redundancy” IEEE International Conference on Robotics & Automation.
[3].Fabrizio Caccavale, et al.(2013). “Discrete-Time Framework For Fault Diagnosis In Robotic Manipulators” IEEE Transections on Control Systems Technology, Vol 21, No 5
[4].Yilin Mi, et al.(2017). ”Fault-Tolerant Control of a 2-Dof Robot Manipulator Using Muti-Sensor Swithing Strategy”
[5].Inseok Hwang, et al.(2010). “A Survey of Fault Detection, Isolation, and Reconfiguration Methods” IEEE Transections on Control Systems Technology, Vol 18, No.3
[6].Jun Wu, Jinsong Wang, Zheng You, “An overview of dynamic parameter identification of robots” Robotics and Computer-Integrated Manufacturing 26(2010) 414-419
[7].Sousa, Cristóvão Jorge Silva Duarte. “Dynamic model identification of robot manipulators: Solving the physical feasibility problem”. Diss. 2015.
[8].M.L.Visinsky, et al.(1994).”New Dynamic Model-Based Fault Detection Thresholds For Robot Manipulators” IEEE International Conference on Robotics and Automation
[9].H. Schneider & P. M. Frank.(1996). ”Observer-Based Supervision and Fault Detection in Robots Using Nonlinear and Fuzzy Logic Residual Evaluation” IEEE Transections on Control Systems Technology, Vol 4, No. 3
[10].Fabrizo Caccavale & Ian D. Walker.(1997).”Observer-Based Fault Detection For Robot Manipulators” IEEE International Conference on Robotics and Automation.
[11].M.L.McIntyre, et al.(2004).”Fault Detection and Identification For Robot Manipulators” IEEE International Conference on Robotics and Automation
[12].Zhan, Youmin, and Jin Jiang. "An interacting multiple-model based fault detection, diagnosis and fault-tolerant control approach." Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No. 99CH36304). Vol. 4. IEEE, 1999.
[13].Freyermuth, Bernd. "An approach to model based fault diagnosis of industrial robots." Proceedings. 1991 IEEE International Conference on Robotics and Automation. IEEE, 1991.
[14].Tolga Yu ̈Ksel & Abdullah Sezgin.(2010).”Two Fault Detection and Isolation Schemes for Robot Manipulators Using Soft Computing Techniques” Elsevier, Vol 10, Pages 125-134
[15].M. Dev Anand, et al.(2012).”Fault Detection and Fault Tolerance Methods for Industrial Robot Manipulators Based on Hybrid Intelligent Approach” APEM Advances in Production Engineering & Management, Vol 7, Pages 225-236
[16].H. A. Talebi & Khorasani.(2012).”A Neural Network-Based Multiplicative Actuator Fault Detection and Isolation of Nonlinear Systems” IEEE Transections on Control Systems Technology, Vol 21, Pages 842-851
[17].Swevers, Jan, et al. "Optimal robot excitation and identification." IEEE transactions on robotics and automation 13.5 “(1997): 730-740.
[18].Calafiore, G., Marina Indri, and Basilio Bona. "Robot dynamic calibration: Optimal excitation trajectories and experimental parameter estimation." Journal of robotic systems 18.2 (2001): 55-68.
[19].Park, Kyung-Jo. "Fourier-based optimal excitation trajectories for the dynamic identification of robots." Robotica 24.5 (2006): 625-633.
[20].Jin, Jingfu, and Nicholas Gans. "Parameter identification for industrial robots with a fast and robust trajectory design approach." Robotics and Computer-Integrated Manufacturing 31 (2015): 21-29.
[21].Tu, X., P. Zhao, and Y. F. Zhou. "Parameter Identification of Static Friction Based on An Optimal Exciting Trajectory." IOP Conference Series: Materials Science and Engineering. Vol. 280. No. 1. IOP Publishing, 2017.
[22].席万强,陈柏,丁力,吴洪涛,谢本华 ”考虑非线性摩擦模型的机器人动力学参数辨识” 农业机械学报053 02. 2017
[23].张铁, et al. "基于牛顿欧拉法的 SCARA 机器人动力学参数辨识." 华南理工大学学报 (自然科学版) 45.10 (2017).
[24].Mata, Vicente, et al. "Dynamic parameter identification for parallel manipulators." Parallel Manipulators, Towards New Applications. IntechOpen, 2008.
[25].Angel, L., and J. Viola. "Parametric identification of a delta type parallel robot." 2016 IEEE Colombian Conference on Robotics and Automation (CCRA). IEEE, 2016.
[26].Brinker, J., B. Corves, and M. Wahle. "A comparative study of inverse dynamics based on clavel’s delta robot." Proceedings of the 14th World Congress in Mechanism and Machine Science. Taipei, Taiwan. 2015.
[27].Codourey, Alain. "Dynamic modeling of parallel robots for computed-torque control implementation." The International Journal of Robotics Research 17.12 (1998): 1325-1336.
[28].Rodrigo Torres Arrazate (2017). "Development of a URDF file for simulation and programming of a delta robot using ROS" Master’s thesis of Department of Mechatronics. hochschule Aachen.
[29].蔡篙岳教授。機器人學。取自上課講義Chapter 5
[30].Du, Jinzhao, and Yunjiang Lou. "Simplified dynamic model for real-time control of the delta parallel robot." 2016 IEEE International Conference on Information and Automation (ICIA). IEEE, 2016.
[31].Yoshida, Koji, and Wisama Khalil. "Verification of the positive definiteness of the inertial matrix of manipulators using base inertial parameters." The International Journal of Robotics Research 19.5 (2000): 498-510.
[32].Crassidis, John L., and John L. Junkins. Optimal estimation of dynamic systems. Chapman and Hall/CRC, 2011.
[33].郭翰。無感測器之阻抗控制應用於Delta機械臂。台北:國立台灣科技大學機械工程系碩士論文,2019.
[34].Swevers, Jan, et al. "Experimental robot identification using optimised periodic trajectories." Mechanical Systems and Signal Processing 10.5 (1996): 561-577.
[35].Grotjahn, M., M. Daemi, and B. Heimann. "Friction and rigid body identification of robot dynamics." International Journal of Solids and Structures 38.10-13 (2001): 1889-1902
[36].郭俊良教授。實驗設計與分析方法。上課講義