研究生: |
高瑋成 Wei-Cheng Gao |
---|---|
論文名稱: |
於CNC加工中心機以新型拋光工具對STAVAX模具鋼經常壓電漿氮化硬化後之表面精加工研究 Research on the Surface Finishing of STAVAX Mold Steel after Atmospheric Plasma Jet Nitriding by Using the New Polishing Tool on a CNC Machining Center |
指導教授: |
修芳仲
Fang-Jung Shiou |
口試委員: |
郭俊良
郭俞麟 吳昌謀 修芳仲 |
學位類別: |
碩士 Master |
系所名稱: |
工程學院 - 機械工程系 Department of Mechanical Engineering |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 135 |
中文關鍵詞: | 擠光加工 、常壓電漿氮化硬化 、拋光加工 、田口實驗法 、表面粗糙度 、STAVAX模具鋼 |
外文關鍵詞: | Burnishing, Atmospheric Plasma Jet Nitriding, Polishing, Taguchi's Method, Surface Roughness, STAVAX mold steel |
相關次數: | 點閱:1001 下載:10 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究主要目的為開發一可安裝於三軸、五軸CNC加工中心機之新型內建荷重元拋光工具,並以自製拋光橡膠體,對擠光加工後施以常壓電漿氮化硬化之STAVAX不鏽模具鋼平面試件進行表面拋光精加工處理,探討其表面粗糙度及硬度之改善。
新型拋光工具有可替換式之夾治具機構設計,依實驗需求,可搭配自製內含氧化鋁粉之拋光球或拋光柱進行加工,將先期研究建議之擠光及拋光參數應用於自由曲面試件,可使擠光加工後之表面粗糙度由Ra 1.07 µm改善至Ra 0.11 µm;再經拋光加工後之表面粗糙度則可改善至Ra 0.05 µm,由以上結果驗證了機構之可靠性。
本研究為探討拋光磨料濃度對於表面粗糙度之影響,將自製拋光橡膠體之氧化鋁粉含量由先期研究之20%提升至30%,並參考先期研究建議之拋光參數應用於平面試件,經實驗證明,氧化鋁粉濃度提升後之拋光膠體,可使試件表面粗糙度結果相較濃度提升前之結果改善約19%。
本研究參考先期研究最佳擠光參數組合,可使平面試件之表面粗糙度由Ra 0.22 µm降至Ra 0.056 µm;再經由常壓電漿氮化硬化製程,使試件表面硬度由392 HV上升至513 HV,而試件表面粗糙度也因此上升至Ra 0.15 µm;最後利用田口實驗設計法,以直徑20 mm拋光柱,得建議拋光參數組合為:粒徑0.5 µm、拋光力7.78 N、進給率0.1 mm/min、轉速7000 rev/min,經拋光後之平面試件表面粗糙度可降低至Ra 0.08 µm,改善47 %之表面粗糙度值。
This research aims to develop a new polishing tool embedded with a load cell that can be installed either on a three-axis or a five-axis CNC machining center. Surface polishing finishing process was conducted by using the lab-made cylindrical-shaped polishing rubber on the planar workpiece of STAVAX stainless mold steel, which has been hardened by the Atmospheric Pressure Plasma Jet Nitriding after burnishing, to investigate the improvement on the surface roughness and hardness.
The new polishing tool consists of a replaceable clamping fixture mechanism design. According to different experimental requirements, either the lab-made polishing balls or the cylindrical-shaped polishing rubber containing aluminum oxide abrasive can be used for the polishing process. To validate the reliability of the developed mechanism, the burnishing and polishing parameters proposed in the previous research have been applied to do the surface finishing of the freeform surfaces, resulted in an improvement of surface roughness from Ra 1.07 µm to Ra 0.11 µm after burnishing process, and further improved to Ra 0.05 µm after the polishing process.
To investigate the effect of the abrasive concentration on the surface roughness improvement, the alumina powder content in the lab-made polishing rubber was increased from 20% to 30%. Applying the polishing parameters proposed in the previous research to the planar workpiece, the increased concentration of the abrasive within the polishing rubber resulted in an improvement of about 19% on the surface roughness, according to the experimental results.
This research referred to the optimal burnishing parameters proposed in the previous research, the surface roughness of the planar workpiece was improved from Ra 0.22 µm to Ra 0.056 µm. Subsequently, through the Atmospheric Plasma Jet Nitriding process, the surface hardness was increased from 392 HV to 513 HV. However, the surface roughness of the workpiece was increased to Ra 0.15 µm. Utilizing the Taguchi experimental design method for a cylindrical-shaped polishing tool with a diameter of 20 mm, the optimal polishing parameters combination were determined as follows: particle size 0.5 µm, polishing force 7.78 N, feed rate 0.1 mm/min, and rotating speed 7,000 rev/min. After the polishing process, the surface roughness of the planar workpiece was improved to Ra 0.08 µm, achieving a 47% improvement on the surface roughness.
[1]Jiang G., Wenhe F., Henry J. H. J., Hirofumi S. and Renke K. (2020), Finishing of Rectangular Microfeatures by Localized Vibration-Assisted Magnetic Abrasive Polishing Method, Journal of Manufacturing Processes, Volume 49, Pages 204-213
[2]Adhithya P. S. A., Sridhar I., Sathyan S., and Yee W. L. (2020), A Novel Retractable Stiffener-based Disk-shaped Active Compliant Polishing Tool, Journal of Manufacturing Processes, Volume 51, Pages 83-94
[3]Amaya L. P. D. S. R.,Julien C., Jean-Marc L. and Pedro J. A. (2021), Analytical-method for Polishing-Surface Prediction Considering Tool Flexibility and Grain-Material Interaction, Journal of Materials Processing Technology, Volume 295, 117208
[4]Jiang X., Lin B., Cao Z. and Jiang X. (2021), Modeling and Experimenting of Disc Hydrodynamic Polishing Process for Ultra-Smooth Surfaces, Journal of Manufacturing Processes, Volume 72, Pages 80-92
[5]Peerapong K., Takeshi W., Takashi G. and Masahiko J. (2022), Mirror Surface Finishing of Hardened Stainless Steel Using Spherical PCD Tool, Precision Engineering, Volume 74, Pages 163-174
[6]Manjesh K. and Manas D. (2022), Impact of Different Magnetorheological Fluid Compositions on Poppet Valve Profile Polishing, Volume 76, Pages 75-87
[7]Manjesh K., Rahul K. B. and Manas D. (2022), Study of Surface Finishing Mechanism in a Rotational-Magnetorheological Miniature Gear Profile Polishing Using Novel Flow Restrictor, Volumes 488–489, 204120
[8]Xiaowei J., Geng W., Shiyu G., Yuanhao M., Zeya Y., Xingwu L., Lishan Z., Qing Q. and Zhongqi T. (2023), A Novel Low-Rotation-Speed Dynamic Friction Polishing of Diamond, Volume 136, 109932
[9]Bingjin Y., Yan G., Jieqiong L., Silin L., Sen Z., Mingshuo K., Yuan X., Yinghuan G., Huibo Z. and Qingsong Y. (2023), Surface Polishing of CoCrMo Alloy by Magnetorheological Polishing, Volume 475, 130162
[10]Tianqi Z., Wenxuan M., Weifeng Y., Jinzhong W., Yan Z., Jinling C., Ling S., Jinlong D., Tianbiao Y. and Ji Z. (2023), Surface Profile Prediction Modeling of Spiral Toolpath for Axial Ultrasonic Vibration-Assisted Polishing, Volume 49, Issue 14, Part A, Pages 23654-23668
[11]莊俊雄(2007),創新型內建荷重計擠光工具應用於工具鋼自動化表面精加工之研究,國立台灣科技大學機械工程系碩士論文。
[12]吳聰維(2017),於CNC加工中心機對Al-6061T6鋁合金進行表面精加工研究,國立台灣科技大學機械工程系碩士論文。
[13]潘建男(2018),自製內含氧化鋁粉橡膠球作STAVAX不鏽模具鋼之自動化表面精加工研究,國立台灣科技大學機械工程系碩士論文。
[14]彭國瑄(2023),於CNC加工中心機以創新內建荷重計球擠光工具對QC-10杜拉鋁合金之自動化表面精加工研究
[15]陳茂全(2008),於CNC工具機進行自動球拋光之定力控制研究,國立台灣科技大學機械工程學系碩士論文。
[16]張端鴻(2014),新型內建荷重計球拋光工具之研製,國立台灣科技大學機械工程碩士論文。
[17]徐銘良(2015),於CNC工具機進行自動球拋光之定力控制研究,國立台灣科技大學機械工程學系碩士論文。
[18]丁肇力(2016),超音波球拋光製程作鏡面不鏽鋼之自動化表面精加工研究,國立台灣科技大學機械工程學系碩士論文。
[19]洪詩函(2018),自製拋光球對STAVAX模具鋼應用於CNC車銑複合工具機表面精加工之研究,國立台灣科技大學機械工程學系碩士論文。
[20]鍾宏明(2019),於CNC工具機進行自製拋光球之定力控制拋光加工研究,國立台灣科技大學機械工程學系碩士論文。
[21]楊雁宇(2020),於CNC工具機以自製拋光工具進行STAVAX模具用鋼之表面精加工研究,國立台灣科技大學機械工程系碩士論文。
[22]陳柏毓(2021),以自製拋光膠體工具進行機器人輔助拋光之定力控制研究,國立台灣科技大學機械工程學系碩士論文。
[23] 施威宇(2023),以實驗室自製橡膠拋光工具於機器手臂進行模具鋼定力拋光研究。
[24]陳建樺(2001),塑膠模壓鑄用鋼之球擠光加工研究,國立台灣科技大學機械工程系碩士論文。
[25]李勝隆,金屬熱處理原理與應用,全華出版社,2020.
[26]Jhao-Yu Guo, Yu-Lin Kuo, Hsien-Po Wang (2021), A Facile Nitriding Approach for Improved Impact Wear of Martensitic Cold-Work Steel Using H2/N2 Mixture Gas in an AC Pulsed Atmospheric Plasma Jet, Journals of Coatings, Volume 11, coatings11091119
[27]邱如德(2002),以球擠光與拋光製程對自由曲面模具之表面精加工之研究,國立台灣科技大學機械工程碩士論文。
[28]范光照、張郭益(2014),精密量測(第六版),高立圖書。
[29]范光照(2000),精密量測,高立書局。
[30]李輝煌(2011),田口方法:品質設計的原理與實務(第四版),高立圖書。
[31]田口玄一(1997),田口實驗計畫法(陳耀茂譯),滄海書局。
[32]李輝煌(2011),田口方法:品質設計的原理與實務(第四版),高立圖書。
[33]G. Taguchi, S. Chowdhury, Y. Wu (2005), Taguchi’s Quality Engineering Handbook, John Wiley & Sons.
[34]天文大同特殊鋼股份有限公司https://www.daidosteel.com.tw/steel.html
[35]炬鋒特殊鋼股份有限公司
https://www.jfs-steel.com/zh-TW/index.html
[36]台灣盛百股份有限公司
https://www.assab.com/taiwan/zh-hant/
[37]百德機械股份有限公司,UX 300中心加工機規格表。
[38]T24-ACMm & T24-BB1 Acquisition Connectivity Module and Battery Box User Manual, Mantracourt Electronics Limited.
[39]T24-BSi, T24-Gsu, T24-BSue T24 base Station User Manual, Mantracourt Electronics Limited.