簡易檢索 / 詳目顯示

研究生: 李仲軒
Chung-Hsuan Lee
論文名稱: 儲能系統電池狀態估測與雲端電池電量分析平台之研究
A Study on Battery Condition Estimation of Energy Storage Systems and Web-Based Battery Energy Analysis Platform
指導教授: 陳坤隆
Kun-Long Chen
口試委員: 陳坤隆
Kun-Long Chen
張建國
Chien-Kuo Chang
楊金石
Jin-Shi Yang
楊明達
Ming-Ta Yang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 108
中文關鍵詞: 電池電量估測儲能系統電池管理系統雲端分析平台卡爾曼濾波器長短期記憶演算法
外文關鍵詞: State of charge estimation, energy storage system, battery management system, cloud-based analysis platform, Kalman filter, long short-term memory algorithm
相關次數: 點閱:345下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著能源高效率應用之問題日益受到關注,電池儲能系統逐漸成為解決能源儲存和調節的重要技術手段之一。而在儲能系統中,電池是其中最為關鍵的組件之一,也是影響儲能系統性能和壽命的重要因素。因此,對電池狀態進行監測與分析,其對於保證儲能系統的正常運轉和延長電池壽命至關重要。
    為了實現對電池狀態的監測和分析,本研究以離島儲能系統之電池充放電資料進行監測與蒐集,並分別以電路模型和以機器學習為基礎,各提出了一個可以用於電池電量估測的演算法,依據其優劣評估其是否適用實現於雲端電池管理系統。
    在建置平台的方面,本文利用了關聯式資料庫管理系統SQL儲存了所要分析的電池的充放電資料,並藉由PHP和Python的數值方法與圖形程式庫實現了歷史資料輸出、取得電壓-電池電量曲線上的所有值和電池電量線上估測等功能。
    本文提出儲能系統電池狀態估測與雲端電池電量分析平台,旨在實現對儲能系統的智慧監控和管理。未來,本平台可以進一步最佳化並完善,加入更多的資料和演算法,以提高其準確性和實用性。同時,將其應用於更多的實際應用場域中,如電動車、家庭儲能系統等,可以進一步擴展其應用範疇。


    In recent years, with the increasing attention to high efficiency energy use issues, battery energy storage systems (BESSs) have gradually become one of the important technical means to solve energy storage and regulation problems. Among the components of energy storage systems (ESSs), batteries are one of the most critical and important factors affecting the performance and lifespan of ESSs. Therefore, monitoring and analyzing the battery status is crucial for ensuring the normal operation of ESSs and extending the battery life.
    To achieve battery status monitoring and analysis, this study used the battery charging and discharging data collected from an ESS installed at a Taiwan’s outlying island. A circuit model and a machine learning based algorithm were proposed for battery state of charge (SoC) estimation, and their effectiveness for a cloud-based battery management system was evaluated based on their performance.
    In terms of online analysis platform construction, this study used an open source relational database PostgreSQL to store all battery charging and discharging data, and implement historical data query, interpolate OCV-SoC curve, and online estimate SoC, and demonstrate analysis results through numerical methods libraries and graphics libraries of PHP and Python programing languages.
    This study presented a battery status estimation and web-based battery capacity analysis platform for ESSs, aiming to achieve intelligent monitoring and management of ESSs. In the future, this platform can be further optimized and improved, with more data sources and algorithms added to enhance its accuracy and industrial applicability. Furthermore, it can be applied to more practical scenarios, such as electric vehicles and home ESSs, to further expand its application prospects.

    第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 2 1.3 研究方法 5 1.4 論文架構 6 第二章 儲能系統發展現況 7 2.1 前言 7 2.2 儲能系統併聯技術要點 7 2.3 電力交易平台 10 2.4 輔助服務商品 11 2.5 台電配電級再生能源管理系統(DREAMS) 13 2.6 能源管理系統(Energy Management System) 14 2.7 IEC61850 15 2.8 本章小結 15 第三章 併網型儲能系統 19 3.1 前言 19 3.2 儲能系統設備介紹 19 3.2.1 電芯/單電池(Cell) 19 3.2.2 電池模組(Module)、電池櫃/組(Battery Rack /Pack/Cabinet) 20 3.2.3 貨櫃(Container)、設備外箱(Enclosure) 21 3.2.4 電力轉換系統(PCS) 21 3.3 電池管理系統(BMS) 22 3.3.1 電池電量狀態(State of Charge, SoC) 22 3.3.2 電池健康狀態(State of Health, SoH) 23 3.4 儲能系統規格 24 3.5 本章小節 25 第四章 儲能系統SoC估測 27 4.1 前言 27 4.2 問題描述 27 4.3 以電路模型參數估測 27 4.3.1 儲能電池模型 28 4.3.2 電池開路電壓OCV與SoC關係曲線 29 4.3.3 電路參數估測 35 4.3.4 卡爾曼濾波器 39 4.3.5 狀態方程式 40 4.3.6 擴展卡爾曼濾波器 43 4.3.7 擴展卡爾曼濾波器估測結果 45 4.4 以機器學習為基礎之SoC估測 46 4.4.1 循環神經網路(Recurrent Neural Network, RNN) 46 4.4.2 長短期記憶(Long Short-Term Memory, LSTM) 48 4.4.3 資料標準化 51 4.4.4 LSTM估測結果 51 4.5 誤差計算與估測結果比較 55 4.6 本章小結 56 第五章 線上電池管理系統 59 5.1 前言 59 5.2 離島發電廠儲能系統案例 59 5.3 儲能系統管理系統輸出資料 59 5.4 線上電池管理系統架構 60 5.4.1 網頁內容管理 61 5.4.2 電池資料庫 63 5.4.3 數值方法與圖形程式庫 63 5.5 線上電池管理系統功能實現 64 5.5.1 歷史資料輸出 64 5.5.2 取得OCV-SoC上的所有值 67 5.5.3 SoC線上估測 69 5.6 本章小結 72 第六章 結論與未來研究方向 75 6.1 結論 75 6.2 未來研究方向 75 參考文獻 79

    [1] G. Wiggins, S. Allu, and H. Wang, “A pythonic equivalent circuit model for battery research,” in Proc. Python in Science Conference, Austin, TX, USA, Jul. 2019.
    [2] B. Xia, W. Zheng, R. Zhang, Z. Lao, and Z. Sun, “A novel observer for lithium-ion battery state of charge estimation in electric vehicles based on a second-order equivalent circuit model,” Energies, vol. 10, no. 8, article no. 1150, Aug. 2017.
    [3] G. S. Misyris, T. Tengner, A. G. Marinopoulos, D. I. Doukas, and D. P. Labridis, “Battery energy storage systems modeling for online applications,” in Porc. 2017 IEEE Manchester PowerTech, Manchester, UK, Jun. 2017.
    [4] Z. Wang, D. T. Gladwin, M. J. Smith, and T. L. Fantham, “Data-selection for state estimation of large-scale battery systems,” in Proc. IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics SoCiety, Toronto, ON, Canada, Nov. 2021.
    [5] C. Lyu, Y. Han, Q. Guo, L. Wang, and Y. Song, “State-of-charge estimation of lithium-ion batteries based on Deep Neural Network,” in Proc. 2020 Global Reliability and Prognostics and Health Management (PHM-Shanghai), Shanghai, China, Oct. 2020.
    [6] S. Jo, S. Jung, and T. Roh, “Battery state-of-health estimation using machine learning and preprocessing with relative state-of-charge,” Energies, vol. 14, no. 21, article no. 7206, Nov. 2021.
    [7] M. S. Calcuttawala, and F. Alhaider, “State of Health estimation of Lithium-ion batteries using operational data,” in Proc. Conf. Sustainable Energy Supply and Energy Storage Systems, Hamburg, Germany, Sept. 2021, pp. 1-8.
    [8] Z. Wang, D. T. Gladwin, M. J. Smith, and S. Haass, “Practical state estimation using Kalman filter methods for large-scale battery systems,” Applied Energy, vol. 294, article no. 117022, Apr. 2021.
    [9] W. Li, M. Rentemeister, J. Badeda, D. Jöst, D. Schulte, and D. U. Sauer, “Digital twin for battery systems: cloud battery management system with online state-of-charge and state-of-health estimation,” Journal of Energy Storage, vol. 30, article no. 101557, Jun. 2020.
    [10] X. Tang, Y. Sun, Y. Zhao, W. Pei, N. Li, and L. Kong, “Digital twin based BESS state estimation and operating optimization,” in Proc. 2021 IEEE 5th Conference on Energy Internet and Energy System Integration (EI2), Taiyuan, China, Oct. 2021.
    [11] 台灣電力公司,「台灣電力股份有限公司儲能系統併聯技術要點」,中華民國109年3月6日。
    [12] 電業法,2019年5月。
    [13] 電力交易平台[online]https://etp.taipower.com.tw/
    [14] 陳中舜、王京明、高銘志,「電力交易平台發展現況與競爭規範之研究」,公平交易季刊,vol. 30, no. 3, pp.99–104, Jul. 2022。
    [15] 輔助服務及備轉容量交易試行平台第三次公開會議簡報https://etp.taipower.com.tw/web/download/05.%20110.04.19%20第三次公開會議簡報.pdf
    [16] 輔助服務及備轉容量交易試行平台第五次公開會議簡報https://etp.taipower.com.tw/web/download/第五次公開會議簡報.pdf
    [17] 配電級再生能源管理系統[online]https://dreams.plato-io.com/#/
    [18] 劉廷舉、吳緯峻、蔡緒良、饒祐禎、陳銘樹,「配電級再生能源管理系統(DREAMS)規劃與應用」,電工通訊季刊,2021第1季,P48 – 60,Mar. 2021。
    [19] H. F. Habib, C. R. Lashway, and O. A. Mohammed, “A review of communication failure impacts on adaptive microgrid protection schemes and the use of energy storage as a contingency,” IEEE Transactions on Industry Applications, vol. 54, no. 2, pp. 1194–1207, Mar.-Apr. 2018.
    [20] H. Frank, S. Mesentean, and F. Kupzog, “Simplified application of the IEC 61850 for distributed energy resources,” in Proc. 2009 First International Conference on Computational Intelligence, Communication Systems and Networks, Indore, India, Sept. 2009.
    [21] C. Brunner, “IEC 61850 for power system communication,” in Proc. 2008 IEEE/PES Transmission and Distribution Conference and Exposition, Chicago, IL, USA, May 2008.
    [22] Advanio IEC 61850 智慧電力與再生能源解決方案[online] http://www.advanio.com.tw/edcontent_d.php?lang=en&tb=1&id=61
    [23] 盛齊綠能-儲能系統介紹[online]
    https://www.billionwatts.com.tw/battery-energy-storage-system-ESS
    [24] 儲能系統架構[online]
    https://buzzorange.com/techorange/2021/03/12/structure-of-energy-storage-system/
    [25] M. T. Lawder, B. Suthar, P. W. Northrop, S. De, C. M. Hoff, O. Leitermann, M. L. Crow, S. Santhanagopalan, and V. R. Subramanian, “Battery energy storage system (BESS) and battery management system (BMS) for grid-scale applications,” Proceedings of the IEEE, vol. 102, no. 6, pp. 1014–1030, May 2014.
    [26] J. H. Lee and I. S. Lee, “Online estimation algorithm of SoC and SoH using neural network for lithium battery,” in Proc. 2021 IEEE 3rd Eurasia Conference on IOT, Communication and Engineering (ECICE), Yunlin, Taiwan, Oct. 2021.
    [27] C. S. Moo, K. S. Ng, Y. P. Chen, and Y. C. Hsieh, “State-of-charge estimation with open-circuit-voltage for lead-acid batteries,” in Proc. 2007 Power Conversion Conference - Nagoya, Nagoya, Japan, Apr. 2007.
    [28] Y. Zhou, M. Dong, and J. Wu, “Hyperparameter optimization for SoC estimation by LSTM with internal resistance,” in Proc. 2021 International Conference on Computer Network, Electronic and Automation (ICCNEA), Xi'an, China, Sept. 2021.
    [29] D. Kanchan, Nihal, and A. P. Fernandes, “Estimation of SoC for real time EV drive cycle using Kalman filter and Coulomb counting,” in Proc. 2022 2nd International Conference on Intelligent Technologies (CONIT), Hubli, India, Aug. 2022.
    [30] X. Bian, L. Liu, J. Yan, Z. Zou, and R. Zhao, “An open circuit voltage-based model for state-of-health estimation of lithium-ion batteries: Model Development and validation,” Journal of Power Sources, vol. 448, article no. 227401, Jan. 2020.
    [31] L. Chen, Z. Lü, W. Lin, J. Li, and H. Pan, “A new state-of-health estimation method for lithium-ion batteries through the intrinsic relationship between ohmic internal resistance and capacity,” Measurement, vol. 116, pp. 586–595, Feb. 2018.
    [32] M Min Zhu, Wensong Hu, and N. C. Kar, “The SoH estimation of LiFePO4 battery based on internal resistance with Grey Markov chain,” in Proc. 2016 IEEE Transportation Electrification Conference and Expo (ITEC), Dearborn, MI, USA, Jun. 2016.
    [33] 台達P140電池芯型錄[online]
    https://filecenter.deltaww.com/Products/Download/18/1802/1011%20DM08-P140-222-5.pdf
    [34] X. Liu, W. Li, and A. Zhou, “PNGV equivalent circuit model and SoC estimation algorithm for lithium battery pack adopted in AGV Vehicle,” IEEE Access, vol. 6, pp. 23639–23647, Mar. 2018.
    [35] Y. Song, M. Park, M. Seo, and S. W. Kim, “Improved SoC estimation of lithium-ion batteries with novel SoC-OCV curve estimation method using equivalent circuit model,” in Proc. 2019 4th International Conference on Smart and Sustainable Technologies (SpliTech), Split, Croatia, June 2019.
    [36] S. Susanna, B. R. Dewangga, O. Wahyungoro, and A. I. Cahyadi, “Comparison of simple battery model and Thevenin battery model for SoC estimation based on OCV method,” in Proc. 2019 International Conference on Information and Communications Technology (ICOIACT), Yogyakarta, Indonesia, Jul. 2019.
    [37] C.-S. Huang and M.-Y. Chow, “Accurate Thevenin’s circuit-based battery model parameter identification,” in Proc. 2016 IEEE 25th International Symposium on Industrial Electronics (ISIE), Santa Clara, CA, USA, Nov. 2016.
    [38] T. Yutthanava, S. Khomfoi, and T. Phophongviwat, “Modeling Li-ion battery using measurement data,” in Proc. 2023 Third International Symposium on Instrumentation, Control, Artificial Intelligence, and Robotics (ICA-SYMP), Bangkok, Thailand, Jan. 2023.
    [39] W. Li, M. Rentemeister, J. Badeda, D. Jöst, D. Schulte, and D. U. Sauer, “Digital twin for battery systems: cloud battery management system with online state-of-charge and state-of-health estimation,” Journal of Energy Storage, vol. 30, article no. 101557, Aug. 2020.
    [40] S. S. Madani and C. Ziebert, “A model-based approach for temperature estimation of a lithium-ion battery pack,” in Proc. 2022 Asia Power and Electrical Technology Conference (APET), Shanghai, China, Nov. 2022.
    [41] “Battery Test Manual For Plug-In Hybrid Electric Vehicles,” Idaho National Laboratory, Sept. 2010.
    [42] Y. Wu, H. Chen, L. Cao, J. Duan, X. Chen, and J. Zhai, “Research on online identification of lithium-ion battery equivalent circuit model parameters,” in Proc. 2022 9th International Forum on Electrical Engineering and Automation (IFEEA), Zhuhai, China, Nov. 2022.
    [43] A. K. Jonscher, “The physical origin of negative capacitance,” Journal of the Chemical Society, Faraday Transactions 2, vol. 82, no. 1, p. 75, Mar, 1986.
    [44] 陳俊義,「雙擴展卡爾曼濾波器應用於磷酸鋰鐵電池電量估測」。國立中山大學電機工程學系研究所碩士論文,2019年7月。
    [45] J. Wang, H. Chang, H. Mei, Y. Cheng, and L. Sun, “SoC estimation of lithium-ion batteries based on extended Kalman filter,” in Proc. 2022 IEEE 4th Eurasia Conference on IOT, Communication and Engineering (ECICE), Yunlin, Taiwan, Oct. 2022.
    [46] P. S. Madhukar and L. B. Prasad, “State estimation using extended Kalman filter and unscented Kalman filter,” in Proc. 2020 International Conference on Emerging Trends in Communication, Control and Computing (ICONC3), Lakshmangarh, India, Feb. 2020.
    [47] P. Khumprom and N. Yodo, “A data-driven predictive prognostic model for lithium-ion batteries based on A deep learning algorithm,” Energies, vol. 12, no. 4, article no. 660, Feb. 2019.
    [48] Q. Ye, X. Yang, C. Chen, and J. Wang, “River water quality parameters prediction method based on LSTM-RNN model,” in Proc. 2019 Chinese Control And Decision Conference (CCDC), Nanchang, China, Jun. 2019.
    [49] S. Urolagin, N. Sharma, and T. K. Datta, “A combined architecture of multivariate LSTM with Mahalanobis and Z-score transformations for oil price forecasting,” Energy, vol. 231, article no. 120963, Sept. 2021.
    [50] M. A. Hannan et al., “SOC estimation of Li-ion batteries with learning rate-optimized deep fully convolutional network,” IEEE Transactions on Power Electronics, vol. 36, no. 7, pp. 7349–7353, Jul, 2021.

    QR CODE