簡易檢索 / 詳目顯示

研究生: 王成祐
Ermias - Girma Leggesse
論文名稱: 理論計算於鋰離子電池電解液與電解液添加劑的氧化還原反應
Theoretical Investigations on Redox Reactions of Lithium Ion Battery Electrolyte and Electrolyte Additives
指導教授: 江志強
Jyh-Chiang Jiang
口試委員: 林昇佃
Shawn D. Lin
何嘉仁
Jia-Jen Ho
蔡明剛
Ming-Kang Tsai
郭哲來
Jer-Lai Kuo
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 172
中文關鍵詞: 添加劑密度泛函理論鋰離子電池氧化分解還原分解碳酸丙烯酯亞硫酸亞乙酯
外文關鍵詞: additive, density functional theory, lithium ion battery, oxidative decomposition, reductive decomposition, propylene carbonate, ethylene sulfite
相關次數: 點閱:594下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著時代的進步,人們越來越關注能源安全,並且極力發展低碳“乾淨”的能源。其中鋰離子電池因擁有良好的電化學特性而受到廣泛的研究。為了徹底了解鋰離子電池中的運作機制,我們結合模擬計算以及實驗來發展高性能的鋰離子電池。在這篇研究中,我們利用量子化學進行計算,進一步了解鋰離子電池中的運作機制,尤其著重於電解質成分中的氧化還原反應。
在電解液添加劑的部分,我們選擇亞硫酸乙烯(ES)作為電解質添加劑,使用高精準度的密度泛函理論研究其在真空與溶劑中一個和兩個電子還原分解的過程ES (ES)Li+(PC)n (n=0-2)。在研究中發現,ES經由反應後會變為開環的自由基,並且能穩定的存在於鋰離子中。藉由了解ES, (ES)Li+(PC) 與(ES)Li+(PC)2的還原分解反應,可以瞭解保護固體電解質SEI膜是由Li2SO3, (CH2OSO2Li)2, CH3CH(OSO2Li)CH2OCO2Li所構成。此外,我們還藉由密度泛函理論計算來研究1,3-Propane Sultone (PS) and (PS)Li+(PC)n (n=0-1)的還原分解反應。在氣相中,PS是還原分解熱力學上是不利的。然而PS在大部分溶劑中可能會進行一個以及兩電子的還原反應。PS的溶劑會先一步轉化為PC,而得到穩定的中間體,然後後進行分解,得到一個更穩定的初級自由基(Li2SO3,(CH-CH 2-CH 2-OSO2Li 2)。在最後的產物中,Li2SO3, (CH-CH2-CH2-OSO2Li)2, and Li-C carbides) and (PC-Li(O2S)O(CH2)3)2會形成一個有效的固體電解質SEI膜。
為了進一步分析在陰極部分的表面膜的形成機制,我們藉由密度泛函理論深入研究碳酸亞丙酯中在鋰鹽(LiClO4, LiBF4, LiPF6 and LiAsF6)中的氧化分解過程,。研究可以發現氧化過後,碳酸亞丙酯中的carbonyl C-O鍵長會縮短,而鄰近的ethereal C-O鍵長會變長,導致自由基丙酮和二氧化碳作為主要的氧化分解產物的形成。初級自由基終止生成polycarbonate, acetone, diketone, 2-(ethan-1-ylium-1-yl)-4-methyl-1, 3-dioxolan-4-ylium and CO2.。由熱力學和動力學的數據顯示,碳酸丙烯酯的氧化分解產物為獨立不同的鋰鹽。然而,碳酸亞丙酯的分解速度常數會受到鋰鹽的影響。基本上,用過渡態理論的速率常數計算,產生的氣體體積的順序是:[PC-CLO4]‾> [PC-BF4]‾> [PC-AsF6]‾> [PC-PF6]‾。然後,我們開發出了高通量虛擬篩選技術,以確定潛在的電解液添加劑源自ES。由6562立體結構不同產生一個虛擬ES的核心結構,通過採用R-基團枚舉計劃來分析鏡像化學。藉由分析分子的性質,例如,前沿分子軌道能量,化學電離勢,電子親和勢,硬度和偶極矩,被選定為描述符。,然後評估潛在的電解液添加劑可以形成在石墨電極上的表面保護膜。


The increasing concern over energy security and drastic climate change is compelling our world to shift gears toward a low carbon ‘clean’ energy sources. The advance in energy storage technologies, specifically electrochemical energy storage such as lithium ion batteries, will play a fundamental role in the development of intermittent renewable energy sources. A thorough understanding of the important processes occurring in lithium ion battery by using either computational or experimental approach will help to develop batteries with better performance. In this thesis, we leveraged on quantum chemical calculations to improve our understanding of lithium ion battery technology, with particular weight given to the redox reactions of electrolyte components.
On the electrolyte additive part, the role of ethylene sulfite (ES) as an electrolyte additive for lithium ion batteries is explained by investigating the one and two electron reductive decomposition of ES and (ES)Li+(PC)n (n=0-2), both in vacuum and solvent, with the aid of high level density functional theory calculations. The open chain radical, which is formed as a result of reduction of ES in solvent without first being coordinated with Li+, is further stabilized by dissolved lithium ion. Based on the study on the reductive decomposition of ES, (ES)Li+(PC) and (ES)Li+(PC)2, the major products which are responsible for the formation of protective solid electrolyte interphase film are Li2SO3, (CH2OSO2Li)2, CH3CH(OSO2Li)CH2OCO2Li and ROSO2Li. We have also studied the electroreductive decomposition of 1,3-Propane Sultone (PS) and (PS)Li+(PC)n (n=0-1) with the aid of density functional theory calculations. In the gas phase, the PS reductive decomposition is thermodynamically unfavorable as supported by the positive Gibbs free energy change and the negative gas phase vertical electron affinity values for the addition of electron to give the radical anion intermediate. However, it is possible that PS can undergo one- as well as two-electron reduction processes in bulk solvent. A solvated PS is reduced prior to PC to give a stable intermediate which then undergo decomposition to yield a more stable primary radical.The products from the termination reactions of the primary radical (Li2SO3, (CH-CH2-CH2-OSO2Li)2, and Li-C carbides) and (PC-Li(O2S)O(CH2)3)2 from the reduction of (PC)-Li+( PS) would build up an effective solid electrolyte interphase.
In order to aid the understand of surface film formation mechanism on the cathode part, we report in-depth mechanistic study on the oxidative decomposition of propylene carbonate in the presence of lithium salts (LiClO4, LiBF4, LiPF6 and LiAsF6) with the help of density functional theory calculations. The shortening of the original carbonyl C-O bond and a lengthening of the adjacent ethereal C-O bonds of propylene carbonate, which occurs as a result of oxidation, leads to the formation of acetone radical and CO2 as a primary oxidative decomposition product. The termination of the primary radical generates polycarbonate, acetone, diketone, 2-(ethan-1-ylium-1-yl)-4-methyl-1, 3-dioxolan-4-ylium and CO2. The thermodynamic and kinetic data show that the major oxidative decomposition products of propylene carbonate are independent of the type of lithium salt. However, the decomposition rate constants of propylene carbonate are highly affected by the lithium salt type. Based on the rate constant calculations using transition state theory, the order of gas volume generation is: [PC-ClO4]‾ > [PC-BF4] ‾ > [PC-AsF6] ‾ > [PC-PF6]‾. We then developed a high throughput virtual screening technique to identify potential electrolyte additive derived from ES. A virtual library consisting of 6562 stereochemically different structures were generated using ES as a core structure by employing R-group enumeration scheme with enhanced stereo. Molecular properties, such as, frontier molecular orbital energies, electron affinity, ionization potential, chemical hardness and dipole moment, were selected as descriptors and calculated relative to ES. The library was then evaluated for a potential electrolyte additive which can form protective surface film on the graphite electrode. Finally to illustrate the potential of the selected additive and hence the screening technique, the reductive decomposition mechanism of the representative molecule was compared with ES.

Acknowledgments i Abstract iv Table of Contents vii List of Tables x List of Figures xiv List of Scheme xiv Chapter 1 Motivation and Outline - 1 - Chapter 2 Introduction to Lithium Ion Battery…………………………..…...- 6 - 2.1 Lithium Ion Batteries - 8 - 2.2 Lithium Ion Battery Materials - 11 - 2.2.1 Negative Electrodes - 11 - 2.2.2 Positive Electrodes - 14 - 2.2.3 Electrolytes - 17 - 2.2.3.1 Solvents - 18 - 2.2.3.2 Lithium Salts - 20 - 2.2.3.3 Electrolyte Additives - 22 - 2.3 Surface Film Formation On Electrodes In Lithium Ion Batteries - 25 - 2.3.1 Anode-Electrolyte Interface: SEI - 25 - 2.3.2 Cathode-Electrolyte Interface - 28 - Chapter 3 Theoretical Background………………………………………….....- 30 - 3.1 Density Functional Theory - 30 - 3.1.1 Thomas Fermi (TF) Approximation - 31 - 3.1.2 Hohenberg-Kohn Theorems - 32 - 3.1.3 The Kohn-Sham Approach - 33 - 3.2 Exchange Functionals - 34 - 3.2.1 Local Density Approximation - 34 - 3.2.2 Gradient Expansion Approximation - 35 - 3.2.3 Generalized Gradient Approximation - 35 - 3.2.4 Hybrid Functionals - 36 - 3.3 Solvent Effects and Reactivity - 37 - 3.3.1 Continuum Model - 38 - 3.3.2 Self-Consistent Reaction Field Method - 39 - Chapter 4 Reductive Decomposition of Ethylene Sulfite: A Film-Forming Electrolyte Additive In Lithium Ion Batteries - 41 - 4.1 Computational Details - 41 - 4.2 Results and Discussion - 43 - 4.2.1 Reduction Mechanism of ES In Vacuum and Bulk Solvent - 43 - 4.2.2 Li+ Solvation In ES Containing PC Based Electrolyte Solutions - 49 - 4.2.3 The Effect of Salt In One and Two Electron Reduction of ES - 53 - 4.2.4 Reduction Mechanism of (ES)Li+(PC) and (ES)Li+(PC)2 - 63 - 4.3 Conclusions - 68 - Chapter 5 Reductive Decomposition of 1,3-Propane Sultone: SEI Forming Additive in Lithium-Ion Batteries - 70 - 5.1 Computational Details - 71 - 5.2 Results and Discussion - 72 - 5.2.1 Reductive Dissociation of PS in Vacuum and Bulk Solvent - 72 - 5.2.2 The Effect of Salt in The Reductive Decomposition of PS - 78 - 5.2.3 Reductive Decomposition of (PC)-Li+(PS) - 83 - 5.3 Conclusion - 91 - Chapter 6 Oxidative Decomposition of Propylene Carbonate in Lithium Ion Batteries - 92 - 6.1 Computational Details - 94 - 6.2 Results and Discussion - 95 - 6.2.1 Thermodynamic Oxidation Potentials of PC-Anion Complexes - 95 - 6.2.2 Oxidative Decomposition Mechanism For PC-PF6‾, PC-BF4‾, PC-AsF6‾ and PC-ClO4‾ ………………………………………………………………..- 98 - 6.2.3 Possible Termination Pathways For the Radical Cation - 108 - 6.3 Conclusion - 114 - Chapter 7 Virtual High-Throughput Screening of Sulfur Based Electrolyte Additives - 115 - 7.1 Computational Details - 117 - 7.2 Results and Discussion - 119 - 7.2.1 Screening of Lead Structures - 119 - 7.2.2 Comparison of Reduction Mechanism Of PDO And ES - 125 - 7.3 Conclusions - 129 - Chapter 8 Conclusions - 131 - Appendices …………………………………………………………………...…..-158-

[1] M. Hook, X. Tang, Energy Policy, 52 (2013) 797-809.
[2] M.M. Thackeray, C. Wolverton, E.D. Isaacs, Energy & Environmental Science, 5 (2012) 7854-7863.
[3] W. Schalkwijk, B. Scrosati, in: W. Schalkwijk, B. Scrosati (Eds.) Advances in Lithium-Ion Batteries, Springer US, 2002, pp. 1-5.
[4] E. Peled, Journal of The Electrochemical Society, 126 (1979) 2047-2051.
[5] K. Xu, Chemical Reviews, 104 (2004) 4303-4418.
[6] T. Reddy, D. Linden, Linden's Handbook of Batteries, 4/e (SET 2), McGraw-Hill Companies, 2010.
[7] J.M. Tarascon, M. Armand, Nature, 414 (2001) 359-367.
[8] W. Schalkwijk, B. Scrosati, Advances in Lithium-Ion Batteries, in, Springer, 2002.
[9] M. Yoshio, R.J. Brodd, A. Kozawa, Lithium-Ion Batteries: Science and Technologies, Springer-Verlag New York, 2009.
[10] P. Research, in, 2012.
[11] K. Mizushima, P.C. Jones, P.J. Wiseman, J.B. Goodenough, Materials Research Bulletin, 15 (1980) 783-789.
[12] J.W. Fergus, Journal of Power Sources, 195 (2010) 939-954.
[13] B. Scrosati, Electrochimica Acta, 45 (2000) 2461-2466.
[14] Y.P. Wu, E. Rahm, R. Holze, Journal of Power Sources, 114 (2003) 228-236.
[15] T.M. Bandhauer, S. Garimella, T.F. Fuller, Journal of The Electrochemical Society, 158 (2011) R1-R25.
[16] J.R. Dahn, U. von Sacken, M.W. Juzkow, H. Al‐Janaby, Journal of The Electrochemical Society, 138 (1991) 2207-2211.
[17] R. Yazami, P. Touzain, Journal of Power Sources, 9 (1983) 365-371.
[18] K. Sekai, H. Azuma, A. Omaru, S. Fujita, H. Imoto, T. Endo, K. Yamaura, Y. Nishi, S. Mashiko, et al., Journal of Power Sources, 43 (1993) 241-244.
[19] M.S. Dresselhaus, G. Dresselhaus, Advances in Physics, 30 (1981) 139-326.
[20] G. Pistoia, Lithium batteries: new materials, developments, and perspectives, Elsevier, 1994.
[21] D. Guerard, A. Herold, Carbon, 13 (1975) 337-345.
[22] J.O. Besenhard, Carbon, 14 (1976) 111-115.
[23] E.I. Kharkov, V.I. Lysov, V.E. Fedorov, L.Y. Matsui, Metallofizika I Noveishie Tekhnologii, 21 (1999) 68-71.
[24] B.Q. Dai, G.L. Zhang, Materials Chemistry and Physics, 78 (2003) 304-307.
[25] M. Noel, R. Santhanam, Journal of Power Sources, 72 (1998) 53-65.
[26] Y. Mizutani, E. Ihara, T. Abe, M. Asano, T. Harada, Z. Ogumi, M. Inaba, Journal of Physics and Chemistry of Solids, 57 (1996) 799-803.
[27] N.V. Maksimova, N.E. Sorokina, O.N. Shornikova, V.V. Avdeev, Journal of Physics and Chemistry of Solids, 65 (2004) 177-180.
[28] X.Y. Chuan, D.Z. Chen, X.R. Zhou, Journal of Materials Science & Technology, 17 (2001) 371-374.
[29] A. Tressaud, P. Hagenmuller, Journal of Fluorine Chemistry, 111 (2001) 221-225.
[30] V.G. Makotchenko, A.S. Nazarov, Inorganic Materials, 32 (1996) 1290-1292.
[31] A.M. Danilenko, Inorganic Materials, 47 (2011) 365-368.
[32] T. Maluangnont, M.M. Lerner, K. Gotoh, Inorganic Chemistry, 50 (2011) 11676-11682.
[33] M. Inagaki, F. Kang, M. Toyoda, Chemistry and Physics of Carbon, 29 (2004) 1-69.
[34] R.S. Xue, Z.M. Shen, Carbon, 41 (2003) 1862-1864.
[35] M.V. Savoskin, A.P. Yaroshenko, G.E. Whyman, M.M. Mestechkin, R.D. Mysyk, V.N. Mochalin, Carbon, 41 (2003) 2757-2760.
[36] B. Ozmen-Monkul, M.M. Lerner, Carbon, 48 (2010) 3205-3210.
[37] T. Maluangnont, W. Sirisaksoontorn, M.M. Lerner, Carbon, 50 (2012) 597-602.
[38] Y.V. Isaev, N.D. Lenenko, L.V. Gumileva, A.G. Buyanovskaya, Y.N. Novikov, E. Stumpp, Carbon, 35 (1997) 563-566.
[39] A.V. Dunaev, I.V. Arkhanyelsky, Y.V. Zubavichus, V.V. Avdeev, Carbon, 46 (2008) 788-795.
[40] T.R. Park, S.S. Rhee, Applied Physics a-Materials Science & Processing, 72 (2001) 367-372.
[41] M.S. Dresselhaus, G. Dresselhaus, Advances in Physics, 51 (2002) 1-186.
[42] A.M. Dimiev, G. Ceriotti, N. Behabtu, D. Zakhidov, M. Pasquali, R. Saito, J.M. Tour, Acs Nano, 7 (2013) 2773-2780.
[43] M.K. Datta, P.N. Kumta, Journal of Power Sources, 194 (2009) 1043-1052.
[44] J. Yamaki, Y. Baba, N. Katayama, H. Takatsuji, M. Egashira, S. Okada, Journal of Power Sources, 119 (2003) 789-793.
[45] S. Hossain, Y.K. Kim, Y. Saleh, R. Loutfy, Journal of Power Sources, 114 (2003) 264-276.
[46] K. Tokumitsu, H. Fujimoto, A. Mabuchi, T. Kasuh, Carbon, 37 (1999) 1599-1605.
[47] A. Mabuchi, H. Fujimoto, K. Tokumitsu, T. Kasuh, Journal of The Electrochemical Society, 142 (1995) 3049-3051.
[48] S. Bhardwaj, M. Sharon, T. Ishihara, Current Applied Physics, 8 (2008) 71-77.
[49] C.R. Jarvis, M.J. Lain, M.V. Yakovleva, Y. Gao, Journal of Power Sources, 162 (2006) 800-802.
[50] Y. Zhang, F. Zhang, G.D. Li, J. Yang, J.S. Chen, Materials Chemistry and Physics, 113 (2009) 309-313.
[51] E. Buiel, J.R. Dahn, Electrochimica Acta, 45 (1999) 121-130.
[52] Y. Sato, Y. Kikuchi, T. Nakano, G. Okuno, K. Kobayakawa, T. Kawai, A. Yokoyama, Journal of Power Sources, 81–82 (1999) 182-186.
[53] R. Bhandavat, G. Singh, Acs Applied Materials & Interfaces, 4 (2012) 5092-5097.
[54] M. Zhou, T.W. Cai, F. Pu, H. Chen, Z. Wang, H.Y. Zhang, S.Y. Guan, Acs Applied Materials & Interfaces, 5 (2013) 3449-3455.
[55] J. Bae, J. Park, Bulletin of the Korean Chemical Society, 33 (2012) 3025-3032.
[56] T. Zheng, J.N. Reimers, J.R. Dahn, Physical Review B, 51 (1995) 734-741.
[57] J.R. Dahn, Physical Review B, 44 (1991) 9170-9177.
[58] J.R. Dahn, R. Fong, M.J. Spoon, Physical Review B, 42 (1990) 6424-6432.
[59] V.V. Avdeev, A.P. Savchenkova, L.A. Monyakina, I.V. Nikol'skaya, A.V. Khvostov, Journal of Physics and Chemistry of Solids, 57 (1996) 947-949.
[60] M.D. Levi, D. Aurbach, Journal of Electroanalytical Chemistry, 421 (1997) 79-88.
[61] D. Aurbach, Y. Ein‐Eli, Journal of The Electrochemical Society, 142 (1995) 1746-1752.
[62] D. Aurbach, B. Markovsky, I. Weissman, E. Levi, Y. Ein-Eli, Electrochimica Acta, 45 (1999) 67-86.
[63] M. Winter, J.O. Besenhard, M.E. Spahr, P. Novak, Advanced Materials, 10 (1998) 725-763.
[64] R. Koksbang, J. Barker, H. Shi, M.Y. Saidi, Solid State Ionics, 84 (1996) 1-21.
[65] G. Pistoia, R. Rosati, Journal of Power Sources, 58 (1996) 135-138.
[66] A.K. Hjelm, G. Lindbergh, A. Lundqvist, Journal of Electroanalytical Chemistry, 506 (2001) 82-91.
[67] Y.M. Hon, H.Y. Chung, K.Z. Fung, M.H. Hon, Journal of Solid State Chemistry, 160 (2001) 368-376.
[68] M. Majima, S. Ujiie, E. Yagasaki, K. Koyama, S. Inazawa, Journal of Power Sources, 101 (2001) 53-59.
[69] E.V. Makhonina, V.S. Dubasova, V.S. Pervov, A.F. Nikolenko, A.S. Fialkov, Inorganic Materials, 37 (2001) 1073-1079.
[70] C. Dearden, M.H. Zhu, B.B. Wang, R.H.R. Castro, Journal of Materials Science, 48 (2013) 1740-1745.
[71] Z.L. Gong, H.S. Liu, X.J. Guo, Z.R. Zhang, Y. Yang, Journal of Power Sources, 136 (2004) 139-144.
[72] W. Li, C. Currie, Journal of the Electrochemical Society, 144 (1997) 2773-2779.
[73] G. Pistoia, Lithium Batteries: New Materials, Developments and Perspectives, Industrial Chemistry Library, 1994.
[74] V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Energy & Environmental Science, 4 (2011) 3243-3262.
[75] S.S. Zhang, Journal of Power Sources, 164 (2007) 351-364.
[76] G.E. Blomgren, Journal of Power Sources, 119 (2003) 326-329.
[77] L. Lombardo, S. Brutti, M.A. Navarra, S. Panero, P. Reale, Journal of Power Sources, 227 (2013) 8-14.
[78] J.O. Besenhard, M. Winter, J. Yang, W. Biberacher, Journal of Power Sources, 54 (1995) 228-231.
[79] M.R. Wagner, J.H. Albering, K.C. Moeller, J.O. Besenhard, M. Winter, Electrochemistry Communications, 7 (2005) 947-952.
[80] G.C. Chung, H.J. Kim, S.I. Yu, S.H. Jun, J.w. Choi, M.H. Kim, Journal of The Electrochemical Society, 147 (2000) 4391-4398.
[81] R. Selim, P. Bro, Journal of The Electrochemical Society, 121 (1974) 1457-1459.
[82] K. Xu, M.S. Ding, T.R. Jow, Journal of The Electrochemical Society, 148 (2001) A267-A274.
[83] M. Ue, S. Mori, Journal of The Electrochemical Society, 142 (1995) 2577-2581.
[84] M.S. Ding, T. Richard Jow, Journal of The Electrochemical Society, 151 (2004) A2007-A2015.
[85] S.-i. Tobishima, A. Yamaji, Electrochimica Acta, 28 (1983) 1067-1072.
[86] H. Nakamura, H. Komatsu, M. Yoshio, Journal of Power Sources, 62 (1996) 219-222.
[87] A.B. McEwen, H.L. Ngo, K. LeCompte, J.L. Goldman, Journal of The Electrochemical Society, 146 (1999) 1687-1695.
[88] G.H. Newman, R.W. Francis, L.H. Gaines, B.M.L. Rao, Journal of The Electrochemical Society, 127 (1980) 2025-2027.
[89] R. Jasinski, S. Carroll, Journal of The Electrochemical Society, 117 (1970) 218-219.
[90] L. Couture, J.E. Desnoyers, G. Perron, Canadian Journal of Chemistry-Revue Canadienne De Chimie, 74 (1996) 153-164.
[91] A. Naji, J. Ghanbaja, B. Humbert, P. Willmann, D. Billaud, Journal of Power Sources, 63 (1996) 33-39.
[92] I. Yoshimatsu, T. Hirai, J.i. Yamaki, Journal of The Electrochemical Society, 135 (1988) 2422-2427.
[93] C.D. Desjardins, T.G. Cadger, R.S. Salter, G. Donaldson, E.J. Casey, Journal of The Electrochemical Society, 132 (1985) 529-533.
[94] M. Ue, Journal of The Electrochemical Society, 141 (1994) 3336-3342.
[95] L.J. Krause, W. Lamanna, J. Summerfield, M. Engle, G. Korba, R. Loch, R. Atanasoski, Journal of Power Sources, 68 (1997) 320-325.
[96] X. Zhang, P.N. Ross, R. Kostecki, F. Kong, S. Sloop, J.B. Kerr, K. Striebel, E.J. Cairns, F. McLarnon, Journal of The Electrochemical Society, 148 (2001) A463-A470.
[97] A. Du Pasquier, A. Blyr, P. Courjal, D. Larcher, G. Amatucci, B. Gerand, J.M. Tarascon, Journal of The Electrochemical Society, 146 (1999) 428-436.
[98] G. Nagasubramanian, Journal of Power Sources, 119 (2003) 811-814.
[99] S.S. Zhang, Journal of Power Sources, 162 (2006) 1379-1394.
[100] D.L. Foster, W.K. Behl, J. Wolfenstine, Journal of Power Sources, 85 (2000) 299-301.
[101] S. Tobishima, Y. Ogino, Y. Watanabe, Journal of Applied Electrochemistry, 33 (2003) 143-150.
[102] S. Tobishima, Y. Ogino, Y. Watanabe, Electrochemistry, 70 (2002) 875-879.
[103] M. Ue, Role-Assigned Electrolytes: Additives, in: M. Yoshio, R. Brodd, A. Kozawa (Eds.) Lithium-Ion Batteries, Springer New York, 2009, pp. 75-115.
[104] D. Aurbach, K. Gamolsky, B. Markovsky, Y. Gofer, M. Schmidt, U. Heider, Electrochimica Acta, 47 (2002) 1423-1439.
[105] Y.X. Wang, S. Nakamura, K. Tasaki, P.B. Balbuena, Journal of the American Chemical Society, 124 (2002) 4408-4421.
[106] S.-K. Jeong, M. Inaba, R. Mogi, Y. Iriyama, T. Abe, Z. Ogumi, Langmuir, 17 (2001) 8281-8286.
[107] X. Zhang, R. Kostecki, T.J. Richardson, J.K. Pugh, P.N. Ross, Journal of The Electrochemical Society, 148 (2001) A1341-A1345.
[108] Y. Wang, P.B. Balbuena, The Journal of Physical Chemistry B, 106 (2002) 4486-4495.
[109] K. Tasaki, Journal of Physical Chemistry B, 109 (2005) 2920-2933.
[110] E.G. Shim, T.H. Nam, J.G. Kim, H.S. Kim, S.I. Moon, Electrochimica Acta, 53 (2007) 650-656.
[111] T.H. Nam, E.G. Shim, J.G. Kim, H.S. Kim, S.I. Moon, Journal of the Electrochemical Society, 154 (2007) A957-A963.
[112] H.F. Xiang, J.J. Chen, H.H. Wang, Ionics, 17 (2011) 415-420.
[113] J. Li, W.H. Yao, Y.S. Meng, Y. Yang, Journal of Physical Chemistry C, 112 (2008) 12550-12556.
[114] N. Ohmi, T. Nakajima, Y. Ohzawa, M. Koh, A. Yamauchi, M. Kagawa, H. Aoyama, Journal of Power Sources, 221 (2013) 6-13.
[115] Y. Matsuda, T. Nakajima, Y. Ohzawa, M. Koh, A. Yamauchi, M. Kagawa, H. Aoyama, Journal of Fluorine Chemistry, 132 (2011) 1174-1181.
[116] X.R. Zhang, J.K. Pugh, P.N. Ross, Journal of the Electrochemical Society, 148 (2001) E183-E188.
[117] C.X. Wang, H. Nakamura, H. Komatsu, H. Noguchi, M. Yoshio, H. Yoshitake, Denki Kagaku, 66 (1998) 286-292.
[118] S.Y. Chen, Z.X. Wang, H.L. Zhao, H.W. Qiao, H.L. Luan, L.Q. Chen, Journal of Power Sources, 187 (2009) 229-232.
[119] K. Abe, T. Hattori, K. Kawabe, Y. Ushigoe, H. Yoshitake, Journal of the Electrochemical Society, 154 (2007) A810-A815.
[120] K. Abe, H. Yoshitake, T. Kitakura, T. Hattori, H.Y. Wang, M. Yoshio, Electrochimica Acta, 49 (2004) 4613-4622.
[121] H.J. Santner, C. Korepp, M. Winter, J.O. Besenhard, K.C. Moller, Analytical and Bioanalytical Chemistry, 379 (2004) 266-271.
[122] H.J. Santner, C. Korepp, M. Winter, J.O. Besenhard, K.C. Moller, Analytical and Bioanalytical Chemistry, 379 (2004) 266-271.
[123] C. Korepp, H.J. Santner, T. Fujii, M. Ue, J.O. Besenhard, K.C. Moller, M. Winter, Journal of Power Sources, 158 (2006) 578-582.
[124] L.D. Xing, W.S. Li, M.Q. Xu, T.T. Li, L. Zhou, Journal of Power Sources, 196 (2011) 7044-7047.
[125] G.H. Wrodnigg, J.O. Besenhard, M. Winter, Journal of Power Sources, 97-8 (2001) 592-594.
[126] G.H. Wrodnigg, J.O. Besenhard, M. Winter, Journal of the Electrochemical Society, 146 (1999) 470-472.
[127] E.G. Leggesse, J.C. Jiang, Journal of Physical Chemistry A, 116 (2012) 11025-11033.
[128] B.T. Yu, W.H. Qiu, F.S. Li, L. Cheng, Journal of Power Sources, 158 (2006) 1373-1378.
[129] G.H. Wrodnigg, T.M. Wrodnigg, J.O. Besenhard, M. Winter, Electrochemistry Communications, 1 (1999) 148-150.
[130] K. Ozawa, Lithium Ion Rechargeable Batteries, Wiley, 2009.
[131] H. Mao, U.V. Sacken, in: U.S. patent (Ed.), 1998.
[132] H. Lee, J.H. Lee, S. Ahn, H.-J. Kim, J.-J. Cho, Electrochemical and Solid-State Letters, 9 (2006) A307-A310.
[133] P. Ganesh, P.R.C. Kent, D.E. Jiang, Journal of Physical Chemistry C, 116 (2012) 24476-24481.
[134] P. Verma, P. Maire, P. Novak, Electrochimica Acta, 55 (2010) 6332-6341.
[135] M.Q. Xu, L.D. Xing, W.S. Li, Progress in Chemistry, 21 (2009) 2017-2027.
[136] E. Endo, K. Tanaka, K. Sekai, Journal of The Electrochemical Society, 147 (2000) 4029-4033.
[137] A. Augustsson, M. Herstedt, J.H. Guo, K. Edstrom, G.V. Zhuang, P.N. Ross, J.E. Rubensson, J. Nordgren, Physical Chemistry Chemical Physics, 6 (2004) 4185-4189.
[138] S. Leroy, F. Blanchard, R. Dedryvere, H. Martinez, B. Carre, D. Lemordant, D. Gonbeau, Surface and Interface Analysis, 37 (2005) 773-781.
[139] P. Novak, D. Goers, L. Hardwick, M. Holzapfel, W. Scheifele, J. Ufhiel, A. Wursig, Journal of Power Sources, 146 (2005) 15-20.
[140] Y.X. Wang, P.B. Balbuena, International Journal of Quantum Chemistry, 102 (2005) 724-733.
[141] M.S. Zheng, Q.F. Dong, H.Q. Cai, M.G. Jin, Z.G. Lin, S.G. Sun, Journal of the Electrochemical Society, 152 (2005) A2207-A2210.
[142] R.J. Chen, F. Wu, L. Li, Y.B. Guan, X.P. Qiu, S. Chen, Y.J. Li, S.X. Wu, Journal of Power Sources, 172 (2007) 395-403.
[143] M. Tang, S.D. Lu, J. Newman, Journal of the Electrochemical Society, 159 (2012) A1775-A1785.
[144] J.T. Lee, N. Nitta, J. Benson, A. Magasinski, T.F. Fuller, G. Yushin, Carbon, 52 (2013) 388-397.
[145] M.Y. Nie, D. Chalasani, D.P. Abraham, Y.J. Chen, A. Bose, B.L. Lucht, Journal of Physical Chemistry C, 117 (2013) 1257-1267.
[146] K. Leung, Chemical Physics Letters, 568–569 (2013) 1-8.
[147] D. Aurbach, Y. Ein‐Eli, B. Markovsky, A. Zaban, S. Luski, Y. Carmeli, H. Yamin, Journal of The Electrochemical Society, 142 (1995) 2882-2890.
[148] Y. Wang, S. Nakamura, M. Ue, P.B. Balbuena, Journal of the American Chemical Society, 123 (2001) 11708-11718.
[149] K. Kanamura, S. Shiraishi, Z.i. Takehara, Journal of The Electrochemical Society, 143 (1996) 2187-2197.
[150] A.M. Haregewoin, E.G. Leggesse, J.-C. Jiang, F.-M. Wang, B.-J. Hwang, S.D. Lin, Journal of Power Sources.
[151] D. Aurbach, A. Zaban, Y. Gofer, Y.E. Ely, I. Weissman, O. Chusid, O. Abramson, Journal of Power Sources, 54 (1995) 76-84.
[152] Y.-K. Sun, S.-T. Myung, B.-C. Park, J. Prakash, I. Belharouak, K. Amine, Nat Mater, 8 (2009) 320-324.
[153] Y.-K. Sun, B.-R. Lee, H.-J. Noh, H. Wu, S.-T. Myung, K. Amine, Journal of Materials Chemistry, 21 (2011) 10108-10112.
[154] Y. Cho, S. Lee, Y. Lee, T. Hong, J. Cho, Advanced Energy Materials, 1 (2011) 821-828.
[155] P. Novak, P.A. Christensen, T. Iwasita, W. Vielstich, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 263 (1989) 37-48.
[156] Q. Wang, P. Ping, X. Zhao, G. Chu, J. Sun, C. Chen, J. Power Sources, 208 (2012) 210-224.
[157] J. Vetter, P. Novak, M.R. Wagner, C. Veit, K.C. Moller, J.O. Besenhard, M. Winter, M. Wohlfahrt-Mehrens, C. Vogler, et al., Journal of Power Sources, 147 (2005) 269-281.
[158] P.G. Balakrishnan, R. Ramesh, T. Prem Kumar, Journal of Power Sources, 155 (2006) 401-414.
[159] Y. Nishi, Journal of Power Sources, 100 (2001) 101-106.
[160] J.-i. Yamaki, Liquid Electrolytes, in: W. Schalkwijk, B. Scrosati (Eds.) Advances in Lithium-Ion Batteries, Springer US, 2002, pp. 155-183.
[161] D. Aurbach, M.D. Levi, E. Levi, H. Teller, B. Markovsky, G. Salitra, U. Heider, L. Heider, Journal of The Electrochemical Society, 145 (1998) 3024-3034.
[162] K. Kanamura, S. Toriyama, S. Shiraishi, M. Ohashi, Z.-i. Takehara, Journal of Electroanalytical Chemistry, 419 (1996) 77-84.
[163] D. Aurbach, K. Gamolsky, B. Markovsky, G. Salitra, Y. Gofer, U. Heider, R. Oesten, M. Schmidt, Journal of The Electrochemical Society, 147 (2000) 1322-1331.
[164] J.K. Labanowski, J. Andzelm, Density functional methods in chemistry, Springer-Verlag, 1991.
[165] W. Koch, M.C. Holthausen, A chemist's guide to density functional theory, Wiley-VCH, 2000.
[166] J.M. Seminario, Recent Developments and Applications of Modern Density Functional Theory, Elsevier Science, 1996.
[167] W. Kohn, Reviews of Modern Physics, 71 (1999) 1253-1266.
[168] R.G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford University Press, USA, 1989.
[169] N.H. March, Advances in Physics, 6 (1957) 1-101.
[170] H.A. Bethe, Physical Review, 167 (1968) 879-907.
[171] R.O. Jones, O. Gunnarsson, Reviews of Modern Physics, 61 (1989) 689-746.
[172] P. Hohenberg, W. Kohn, Physical Review, 136 (1964) B864-B871.
[173] W. Kohn, L.J. Sham, Physical Review, 140 (1965) A1133-A1138.
[174] P.-O. Lowdin, Physical Review, 97 (1955) 1474-1489.
[175] R.G. Parr, W. Yang, Annu. Rev. Phys. Chem., 46 (1995) 701-728.
[176] M. Slamet, V. Sahni, International Journal of Quantum Chemistry, 44 (1992) 333-345.
[177] J. Perdew, M. Harbola, V. Sahni, Generalized Gradient Approximations for Exchange and Correlation: Numerical Tests and Prospects, in: J. Arponen, R.F. Bishop, M. Manninen (Eds.) Condensed Matter Theories, Springer US, 1988, pp. 235-247.
[178] D.C. Langreth, M.J. Mehl, Physical Review B, 28 (1983) 1809-1834.
[179] J.P. Perdew, Physical Review B, 33 (1986) 8822-8824.
[180] A.D. Becke, The Journal of Chemical Physics, 98 (1993) 5648-5652.
[181] C. Lee, W. Yang, R.G. Parr, Physical Review B, 37 (1988) 785-789.
[182] A.D. Becke, Physical Review A, 38 (1988) 3098-3100.
[183] P.K. Chattaraj, Chemical Reactivity Theory: A Density Functional View, Taylor & Francis, 2009.
[184] O. Tapia, J. Bertran, Solvent Effects and Chemical Reactivity, Springer, 2003.
[185] A.R. Leach, Molecular modelling: principles and applications, Longman, 1996.
[186] J. Tomasi, E. Cances, C.S. Pomelli, M. Caricato, G. Scalmani, M.J. Frisch, R. Cammi, M.V. Basilevsky, G.N. Chuev, et al., Modern Theories of Continuum Models, in: Continuum Solvation Models in Chemical Physics, John Wiley & Sons, Ltd, 2007, pp. 1-123.
[187] J. Tomasi, M. Persico, Chemical Reviews, 94 (1994) 2027-2094.
[188] J. Tomasi, B. Mennucci, R. Cammi, Chemical Reviews, 105 (2005) 2999-3094.
[189] L. Onsager, Journal of the American Chemical Society, 58 (1936) 1486-1493.
[190] A.V. Marenich, C.J. Cramer, D.G. Truhlar, The Journal of Physical Chemistry B, 113 (2009) 6378-6396.
[191] J. Tomasi, R. Bonaccorsi, R. Cammi, F.J.O. del Valle, Journal of Molecular Structure: THEOCHEM, 234 (1991) 401-424.
[192] S. Miertuš, E. Scrocco, J. Tomasi, Chemical Physics, 55 (1981) 117-129.
[193] M. Connolly, Science, 221 (1983) 709-713.
[194] W. Yao, Z. Zhang, J. Gao, J. Li, J. Xu, Z. Wang, Y. Yang, Energy & Environmental Science, 2 (2009) 1102.
[195] L. Xing, W. Li, M. Xu, T. Li, L. Zhou, Journal of Power Sources, 196 (2011) 7044-7047.
[196] Y. Ein-Eli, S.R. Thomas, V.R. Koch, Journal of The Electrochemical Society, 143 (1996) L195-L197.
[197] R. Chen, F. Wu, L. Li, Y. Guan, X. Qiu, S. Chen, Y. Li, S. Wu, Journal of Power Sources, 172 (2007) 395-403.
[198] M.Q. Xu, W.S. Li, X.X. Zuo, J.S. Liu, X. Xu, Journal of Power Sources, 174 (2007) 705-710.
[199] Y. Ein-Eli, S.R. Thomas, V.R. Koch, Journal of The Electrochemical Society, 144 (1997) 1159-1165.
[200] H. Ota, T. Sato, H. Suzuki, T. Usami, Journal of Power Sources, 97-98 (2001) 107-113.
[201] Y.-K. Han, S.U. Lee, J.-H. Ok, J.-J. Cho, H.-J. Kim, Chemical Physics Letters, 360 (2002) 359-366.
[202] R.C. Gaussian 03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.
[203] A.D. Becke, J. Chem. Phys., 98 (1993) 5648.
[204] P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, The Journal of Physical Chemistry, 98 (1994) 11623-11627.
[205] L.W. S. H. Vosko, M. Nusair, Canadian Journal of Physics, 58 (1980) 1200-1211.
[206] M.J. Frisch, J.A. Pople, J.S. Binkley, The Journal of Chemical Physics, 80 (1984) 3265-3269.
[207] M. Xu, Y. Liu, B. Li, W. Li, X. Li, S. Hu, Electrochemistry Communications, 18 (2012) 123-126.
[208] B. Li, M. Xu, T. Li, W. Li, S. Hu, Electrochemistry Communications, 17 (2012) 92-95.
[209] M. Xu, L. Zhou, L. Hao, L. Xing, W. Li, B.L. Lucht, Journal of Power Sources, 196 (2011) 6794-6801.
[210] M. Xu, L. Hao, Y. Liu, W. Li, L. Xing, B. Li, The Journal of Physical Chemistry C, 115 (2011) 6085-6094.
[211] T. Li, L. Xing, W. Li, B. Peng, M. Xu, F. Gu, S. Hu, The Journal of Physical Chemistry A, 115 (2011) 4988-4994.
[212] E.G. Leggesse, J.C. Jiang, RSC Advances, 2 (2012) 5439-5446.
[213] A.E.R. E. D. Glendening, J. E. Carpenter, and F. Weinhold., NBO Version 3.1.
[214] V. Barone, Cossi, M. , J. Phys. Chem. A, 102 (1998) 1995.
[215] R.F.W. Bader, Atoms in Molecules - A Quantum Theory, Oxford University Press, Oxford, 1990.
[216] Y. Bu, Y. Liu, C. Deng, Journal of Molecular Structure: THEOCHEM, 422 (1998) 219-228.
[217] W.D. Robertson, N.I. Hammer, J.E. Bartmess, R.N. Compton, K. Diri, K.D. Jordan, J. Chem. Phys., 122 (2005) 204319.
[218] S. Kobayashi, Y. Uchimoto, The Journal of Physical Chemistry B, 109 (2005) 13322-13326.
[219] F. Sagane, T. Abe, Z. Ogumi, The Journal of Physical Chemistry C, 113 (2009) 20135-20138.
[220] K. Xu, A. von Cresce, U. Lee, Langmuir, 26 (2010) 11538-11543.
[221] M.D. Bhatt, M. Cho, K. Cho, Appl. Surf. Sci., 257 (2010) 1463-1468.
[222] M.H. Park, Y.S. Lee, H. Lee, Y.-K. Han, Journal of Power Sources, 196 (2011) 5109-5114.
[223] Y. Matsuda, T. Fukushima, H. Hashimoto, R. Arakawa, Journal of The Electrochemical Society, 149 (2002) A1045-A1048.
[224] T. Fukushima, Y. Matsuda, H. Hashimoto, R. Arakawa, Electrochemical and Solid-State Letters, 4 (2001) A127-A128.
[225] T. Fukushima, Y. Matsuda, H. Hashimoto, R. Arakawa, Journal of Power Sources, 110 (2002) 34-37.
[226] R.L. Jarek, T.D. Miles, M.L. Trester, S.C. Denson, S.K. Shin, The Journal of Physical Chemistry A, 104 (2000) 2230-2237.
[227] D. Spangberg, K. Hermansson, Chemical Physics, 300 (2004) 165-176.
[228] J.M. Vollmer, L.A. Curtiss, D.R. Vissers, K. Amine, Journal of The Electrochemical Society, 151 (2004) A178-A183.
[229] J.M. Vollmer, L.A. Curtiss, D.R. Vissers, K. Amine, Journal of The Electrochemical Society, 151 (2004) A178-A183.
[230] H. Ota, T. Akai, H. Namita, S. Yamaguchi, M. Nomura, Journal of Power Sources, 119-121 (2003) 567-571.
[231] L.E. Roy, E. Jakubikova, M.G. Guthrie, E.R. Batista, The Journal of Physical Chemistry A, 113 (2009) 6745-6750.
[232] S. Trasatti, Pure Appl. Chem., 58 (1986) 955-966.
[233] X.R. Zhang, R. Kostecki, T.J. Richardson, J.K. Pugh, P.N. Ross, Journal of the Electrochemical Society, 148 (2001) A1341-A1345.
[234] F. Wang, J. Graetz, M.S. Moreno, C. Ma, L. Wu, V. Volkov, Y. Zhu, ACS Nano, 5 (2011) 1190-1197.
[235] J. Christensen, J. Newman, Journal of The Electrochemical Society, 151 (2004) A1977-A1988.
[236] K. Persson, V.A. Sethuraman, L.J. Hardwick, Y. Hinuma, Y.S. Meng, A. van der Ven, V. Srinivasan, R. Kostecki, G. Ceder, The Journal of Physical Chemistry Letters, 1 (2010) 1176-1180.
[237] K. Xu, A. von Cresce, Journal of Materials Chemistry, 21 (2011) 9849-9864.
[238] H. Lee, S. Choi, S. Choi, H.-J. Kim, Y. Choi, S. Yoon, J.-J. Cho, Electrochemistry Communications, 9 (2007) 801-806.
[239] X. Zuo, M. Xu, W. Li, D. Su, J. Liu, Electrochemical and Solid-State Letters, 9 (2006) A196.
[240] G. Park, H. Nakamura, Y. Lee, M. Yoshio, Journal of Power Sources, 189 (2009) 602-606.
[241] M. Xu, W. Li, B.L. Lucht, Journal of Power Sources, 193 (2009) 804-809.
[242] G. Yongxing, Y. Zhenguo, T. Zhiyong, L. Xinhai, W. Zhixing, Journal of Power Sources, 184 (2008) 513-516.
[243] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J. Montgomery, J. A. , T. Vreven, K.N. Kudin, et al., in, Gaussian, Inc., Wallingford CT, 2009.
[244] F. Jensen, Introduction to Computational Chemistry 2ed., John Wiley & Sons Ltd, Chichester, 2007.
[245] D.A. McQuarrie, J.D. Simon, Physical Chemistry: A Molecular Approach, University Science Books, Sausalito, CA, 1997.
[246] T. Li, P.B. Balbuena, Chemical Physics Letters, 317 (2000) 421-429.
[247] E. Niki, Y. Kamiya, Journal of the American Chemical Society, 96 (1974) 2129-2133.
[248] J.P. Lorand, The Cage Effect, in: Progress in Inorganic Chemistry, John Wiley & Sons, Inc., 2007, pp. 207-325.
[249] S. Chalmet, D. Rinaldi, M.F. Ruiz-Lopez, International Journal of Quantum Chemistry, 84 (2001) 559-564.
[250] S. Shaik, D. Danovich, W. Wu, P.C. Hiberty, Nat Chem, 1 (2009) 443-449.
[251] W. Wu, J. Gu, J. Song, S. Shaik, P.C. Hiberty, Angewandte Chemie International Edition, 48 (2009) 1407-1410.
[252] A. D, Journal of Power Sources, 119–121 (2003) 497-503.
[253] D. Aurbach, M.D. Levi, E. Levi, A. Schechter, The Journal of Physical Chemistry B, 101 (1997) 2195-2206.
[254] X. Zhang, J.K. Pugh, P.N. Ross, Journal of The Electrochemical Society, 148 (2001) E183-E188.
[255] K. Kanamura, T. Umegaki, M. Ohashi, S. Toriyama, S. Shiraishi, Z.-i. Takehara, Electrochimica Acta, 47 (2001) 433-439.
[256] K. Kanamura, S. Toriyama, S. Shiraishi, Z.i. Takehara, Journal of The Electrochemical Society, 142 (1995) 1383-1389.
[257] M. Arakawa, J.-i. Yamaki, J. Power Sources, 54 (1995) 250-254.
[258] L. Xing, C. Wang, W. Li, M. Xu, X. Meng, S. Zhao, The Journal of Physical Chemistry B, 113 (2009) 5181-5187.
[259] L. Xing, O. Borodin, G.D. Smith, W. Li, The Journal of Physical Chemistry A, 115 (2011) 13896-13905.
[260] L. Xing, W. Li, C. Wang, F. Gu, M. Xu, C. Tan, J. Yi, The Journal of Physical Chemistry B, 113 (2009) 16596-16602.
[261] M. Li, W. Liu, C. Peng, Q. Ren, W. Lu, W. Deng, International Journal of Quantum Chemistry, 113 (2013) 966-974.
[262] S. Scheiner, International Journal of Quantum Chemistry, 112 (2012) 1879-1886.
[263] A.K. Sangha, J.M. Parks, R.F. Standaert, A. Ziebell, M. Davis, J.C. Smith, The Journal of Physical Chemistry B, 116 (2012) 4760-4768.
[264] E.I. Izgorodina, D.R.B. Brittain, J.L. Hodgson, E.H. Krenske, C.Y. Lin, M. Namazian, M.L. Coote, The Journal of Physical Chemistry A, 111 (2007) 10754-10768.
[265] Y. Zhao, D.G. Truhlar, The Journal of Physical Chemistry A, 112 (2008) 1095-1099.
[266] M.T. Nguyen, S. Creve, L.G. Vanquickenborne, The Journal of Physical Chemistry, 100 (1996) 18422-18425.
[267] H.M.T. Nguyen, J. Peeters, M.T. Nguyen, A.K. Chandra, The Journal of Physical Chemistry A, 108 (2003) 484-489.
[268] Q. Wu, G. Liang, L. Zu, W. Fang, The Journal of Physical Chemistry A, 116 (2012) 3156-3162.
[269] J. Fang, A. Kelarakis, Y.-W. Lin, C.-Y. Kang, M.-H. Yang, C.-L. Cheng, Y. Wang, E.P. Giannelis, L.-D. Tsai, Physical Chemistry Chemical Physics, 13 (2011) 14457-14461.
[270] R.A. DiLeo, A. Castiglia, M.J. Ganter, R.E. Rogers, C.D. Cress, R.P. Raffaelle, B.J. Landi, ACS Nano, 4 (2010) 6121-6131.
[271] E. P.J. Linstrom and W.G. Mallard, NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg MD, 20899, http://webbook.nist.gov, (retrieved July 19, 2012).
[272] S.-I. Tobishima, A. Yamaji, Electrochimica Acta, 29 (1984) 267-271.
[273] E. Cattaneo, B. Rasch, W. Vielstich, Journal of Applied Electrochemistry, 21 (1991) 885-894.
[274] O. Borodin, The Journal of Physical Chemistry B, 113 (2009) 11463-11478.
[275] J. Vatamanu, O. Borodin, D. Bedrov, G.D. Smith, The Journal of Physical Chemistry C, 116 (2012) 7940-7951.
[276] Z.-M. Xue, C.-H. Chen, Electrochimica Acta, 49 (2004) 5167-5175.
[277] Z. Xue, Y. Ding, C. Chen, Electrochimica Acta, 53 (2007) 990-997.
[278] R.B. Woodward, R. Hoffmann, Angewandte Chemie International Edition in English, 8 (1969) 781-853.
[279] C.E. Hudson, D.J. McAdoo, Journal of the American Society for Mass Spectrometry, 15 (2004) 972-981.
[280] D.J. McAdoo, Mass Spectrometry Reviews, 19 (2000) 38-61.
[281] J. Zhou, H.B. Schlegel, The Journal of Physical Chemistry A, 112 (2008) 13121-13127.
[282] E.G. Leggesse, J.-C. Jiang, RSC Advances, 2 (2012) 5439-5446.
[283] G.B. Olson, Science, 288 (2000) 993-998.
[284] S. Curtarolo, G. Hart, M. Nardelli, N. Mingo, S. Sanvito, O. Levy, Nature materials, 12 (2013) 191-201.
[285] A. Mavromaras, D. Rigby, W. Wolf, M. Christensen, M. Halls, C. Freeman, P. Saxe, E. Wimmer, in: Thermal, Mechanical & Multi-Physics Simulation, and Experiments in Microelectronics and Microsystems (EuroSimE), 2010 11th International Conference on, 2010, pp. 1-10.
[286] S. Curtarolo, W. Setyawan, S. Wang, J. Xue, K. Yang, R.H. Taylor, L.J. Nelson, G.L.W. Hart, S. Sanvito, et al., Computational Materials Science, 58 (2012) 227-235.
[287] A. Jain, G. Hautier, C.J. Moore, S. Ping Ong, C.C. Fischer, T. Mueller, K.A. Persson, G. Ceder, Computational Materials Science, 50 (2011) 2295-2310.
[288] R.D. Brown, S. Varma-O'Brien, D. Rogers, QSAR & Combinatorial Science, 25 (2006) 1181-1191.
[289] G. Ceder, G. Hautier, A. Jain, S.P. Ong, MRS Bulletin, 36 (2011) 185-191.
[290] G. Hautier, A. Jain, S. Ong, Journal of Materials Science, 47 (2012) 7317-7340.
[291] M.D. Halls, K. Tasaki, Journal of Power Sources, 195 (2010) 1472-1478.
[292] M. Yoshio, H. Nakamura, N. Dimov, Development of Lithium-Ion Batteries: From the Viewpoint of Importance of the Electrolytes, in: Lithium Ion Rechargeable Batteries, Wiley-VCH Verlag GmbH & Co. KGaA, 2010, pp. 163-178.
[293] J.J.P. Stewart, Journal of Computational Chemistry, 10 (1989) 221-264.
[294] J.J.P. Stewart, Journal of Computational Chemistry, 10 (1989) 209-220.
[295] A.A. Clark T, Beck B, Chandrasekhar J, Gedeck P, Horn AHC, Hutter M, Martin B, Rauhut G, Sauer W, Schindler T, Steinke T (2005) Computer-Chemie-Centrum. Universitat Erlangen-Nurnberg, Erlangen, in.
[296] Pipeline, Pilot, SciTegic Inc., San Diego, CA, USA.
[297] T. Koopmans, Physica, 1 (1934) 104-113.
[298] P. Chattaraj, R. Parr, Density functional theory of chemical hardness, in: K.D. Sen (Ed.) Chemical Hardness, Springer Berlin Heidelberg, 1993, pp. 11-25.
[299] C.L. Hwang, A.S.M. Masud, Multiple objective decision making, methods and applications: a state-of-the-art survey, Springer-Verlag, 1979.
[300] K.A. Smith, M.C. Smart, G.K.S. Prakash, B.V. Ratnakumar, ECS Transactions, 11 (2008) 91-98.
[301] S. Chen, Z. Wang, H. Zhao, H. Qiao, H. Luan, L. Chen, Journal of Power Sources, 187 (2009) 229-232.
[302] T. Achiha, T. Nakajima, Y. Ohzawa, M. Koh, A. Yamauchi, M. Kagawa, H. Aoyama, Journal of The Electrochemical Society, 157 (2010) A707-A712.
[303] I.L. Knunyants, A.V. Fokin, Bulletin of the Academy of Sciences of the USSR, Division of chemical science, 1 (1952) 279-283.
[304] H. Ota, Y. Sakata, A. Inoue, S. Yamaguchi, Journal of The Electrochemical Society, 151 (2004) A1659-A1669.

QR CODE