研究生: |
黃建中 Chien-Chung Huang |
---|---|
論文名稱: |
液冷用小型直流無刷離心泵之開發研究 Study of DC Brushless Centrifugal Pump for Liquid Cooling System |
指導教授: |
林顯群
Sheam-Chyun Lin |
口試委員: |
李基禎
none 郭鴻森 none 陳呈芳 none |
學位類別: |
碩士 Master |
系所名稱: |
工程學院 - 機械工程系 Department of Mechanical Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 125 |
中文關鍵詞: | 散熱系統 、水冷 、水泵 、幫浦 |
外文關鍵詞: | Thermal, Liquid cooling, liquid pump, pump |
相關次數: | 點閱:446 下載:32 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自從電子零件的體積不斷的微小化以來,散熱一直是電子零件穩定運轉的頭號問題,從電晶體時代直到今天的大型積體電路,如何作最好的散熱,這個課題總是關係著電子零件工作壽命及效能。水冷散熱系統即是因應電晶體數量倍增的時代所產生的應用,本研究中將針對水冷系統中所使用的水泵,採用數值模擬軟體對葉輪葉片形式做流場模擬,利用模擬所得到的最佳設計結果;而馬達設計則使用電磁模擬軟體進行創造矽鋼片齒型,利用其模擬的結果製作成模型來進行實驗。同時本文針對水冷散熱系統之水泵所使用的材料限制作剖析,並建議各零件之適用材料。最後將電磁模擬軟體得到一個最佳化的矽鋼片齒型,數值模擬最佳化的水泵設計製作成實體模型,再利用實驗的方法來驗證其成效,並利用模擬工具進一步做水泵設計之微調,以確保水泵能達到水冷散熱系統所需要的流量、揚程及散熱特性之要求。本研究之完成可建立一套結合數值與實驗方法之系統化設計方法,能提供散熱工程師進行快速、有效的小型水泵開發研究。
With the rapid advance of IC industry, the power dissipation of CPU increases significantly and generates a challenging task for thermal engineer. In addition the user’s requirement on reducing the computer noise has made the liquid cooling becoming a potential candidate for PC thermal management. Hence, a substantial need for high-performance small centrifugal pump is existed and becomes the goal of this research. In this study, a combined numerical effort executed by CFD code and electric engineering simulation software is applied to obtain the appropriate pump and motor designs, which is utilized to fabricate the prototype via CNC machine. Thereafter, the performances of prototypes are carried out in a test setup incorporated to meet the ANS test code. Furthermore, to obtain the design guideline, a comprehensive parametric study on the blade type, hub diameter, inlet area, and outlet areas is executed to identify the corresponding influences on pump performance. Also, the numerical outcomes of the associated flow field inside a small centrifugal pump are utilized for the flow visualization to identify the possibility of performance enhancement. In conclusion, this best prototype generated from these numerical and experimental results can meet the original design target for liquid cooling system. Also, several design guidelines are drawn for pump design engineers.
[1]Moore E. Gordon, “Cramming More Components onto Integrated Circuits” Electronics, Volume 38, Number 8, April 19, 1965.
[2]奇鋐科技股份有公司網站,http://www.avc.com.tw/.
[3]Chu, R. C., Hwang,U. P., and Simons, R. E., “Conduction Cooling for an LSI Package : A One-Dimensional Approach”, IBM J., RES.
Deveop., Volume 1, January 1982.
[4]洪淑美, “左心室輔助器之設計與數值分析”, 台灣科技大學機械所,
碩士論文, 民國九十三年。
[5]Sorensen, E., “Potential Flow through Centrifugal Pumps and Turbines”, NACA TM-973, 1941.
[6]Acosta, A. J., “An Experimental and Theoretical Investigation of Two-Dimensional Centrifugal Pump Impeller”, Trans. ASME, Vol. 76,
pp. 749-763, 1954.
[7]Bowerman, R. and Acosta, A., “Effect of the Volume on Performance of Centrifugal Pump Impeller”, Trans. ASME, Vol. 79, pp. 1057-1069,
1957.
[8]Eckardt, D., “Instantaneous Measurements in the Jet-Wake Discharge Flow of a Centrifugal Compressor Impeller”, ASME Journal of
Engineering for Power, Vol. 97, pp. 337-346, 1975.
[9]Johnson, M. W. and Moore, J., “The Influence of Flow Rate on the Wake in a Centrifugal Impeller”, ASME Journal of Engineering for
Power, Vol. 105, pp. 33-39, 1983.
[10]神宮 敬, “泵之設計製圖”, 台隆書店出版, 民國八十一年.
[11]Inoue, M. and Cumpsty, N. A., “Experimental Study of Centrifugal Impeller Discharge Flow in Vaneless and Vaned Diffusers”, ASME Journal of Engineering for Gas Turbine and Power, Vol. 106, pp.
455-467, 1984.
[12]Bankston, J. David and Baker, Fred Eugene, “Selecting the Proper
Pump”, SRAC Publication, No. 372, Dec. 1994.
[13]Jude, L. and Homentcovschi, D., “Numerical Analysis of the Inviscid Incompressible Flow in Two-Dimensional Radial-Flow Pump Impellers”, ELSEVIER, Engineering Analysis with Boundary
Elements, Vol. 22, pp. 271-279, 1998.
[14]Li, Wen-Guang, “Effects of Viscosity of Fluid on Centrifugal Pump Performance and Flow Pattern in the Impeller”, ELSEVIER,
International J. of Heat and Fluid Flow, Vol. 21, pp. 207-212, 1999.
[15]Yu, S. C. M., Ng, B. T. H., Chan, W. K., and Chua, L. P., “The Flow Patterns within the Impeller Passages of a Centrifugal Blood Pump Model”, ELSEVIER, Medical Engineering and Physics, Vol. 22, pp.
381-393, 2000.
[16]Marek, Behr, Dhruv, Arora and Sebastian, Schulte-Eistrup, “Prediction of Flow Features in Centrifugal Blood Pumps”, European Conference
on Computational Mechanics(ECCM), Cracow, Poland, 2001.
[17]Choi, Jong-Soo, McLaughlin, Dennis K., and Thompson, Donald E., “Experiments on the Unsteady Flow Field and Noise Generation in a Centrifugal Pump Impeller”, ACADEMIC PRESS, Journal of Sound
and Vibration,Vol. 263, pp. 493-514, 2002.
[18]Gülich, J.F., Winterthur, Lausanne, “Effect of Reynolds-Number and Surface Roughness on the Efficiency of Centrifugal Pumps”, ASME
Journal of Fluids Engineering, Vol. 125, pp. 670-679, 2003.
[19]Langthjem, M. A. and Olhoff, N., “A Numerical Study of Flow-Induced Noise in a Two-Dimensional Centrifugal Pump. Part I. Hydrodynamics”, ELSEVIER, Journal of Fluids and Structures,
Vol. 19, pp. 349-368, 2004.
[20]Langthjem, M. A. and Olhoff, N., “A Numerical Study of Flow-Induced Noise in a Two-Dimensional Centrifugal Pump. Part II. Hydroacoustics”, ELSEVIER Journal of Fluids and Structures, Vol. 19,
pp. 369-386, 2004.
[21]Coolermaster公司網站,http://www.coolermaster.com .
[22]Thermaltake 公司網站,http://www.thermaltake.com .
[23]Swiftech 公司網站,http://www.swiftnets.com .
[24]Apple 公司網站,http://www.apple.com/powermac/design.html
[25]賴耿陽,“氣體軸承”, 復漢出版社有限公司, 民國八十七年.
[26]Bearing Selection, http://www.nmb-minebea.co.uk/bearingselection/index.htm
[27]段維新, “材料科學”, http://www.mse.ntu.edu.tw/course/webcourse/u0130/ceramic/Ceramic.htm#簡介, 台灣大學.
[28]張六文, 黃議興,“電磁鋼片的特性與應用”, 馬達科技研究中心, 民國九十二年.
[29]豐祿企業股份有限公司產品目錄。
[30]榮星電線工業股份有限公司產品目錄。
[31]黃國華, 陳鴻誠, “永磁電機頓轉轉矩之分析”, 馬達科技研究中心, 民國九十三年.
[32]Hydraulic Institute, “American National Standard for Centrifugal
Pump Tests”, ANSI, Aug.1994.