簡易檢索 / 詳目顯示

研究生: 洪啟瀚
Chi-Han Hong
論文名稱: 熱力學平衡反應法優選溶膠凝膠製程條件:以鋰離子電池NMC正極粉體為例
Thermodynamic equilibrium reaction method to optimize sol-gel synthesis conditions: an example of lithium-ion battery NMC cathode powder
指導教授: 蔡秉均
Ping-Chun Tsai
口試委員: 丘群
周振嘉
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 30
中文關鍵詞: 鋰離子電池單晶 NMC 正極材料sol-gel 法螯合平衡常數
外文關鍵詞: Li-ion batteries, single-crystalline NMC material, sol-gel synthesis, chelation, equilibrium constant
相關次數: 點閱:203下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋰離子電池高鎳層狀結構正極材料 Ni-rich LiNixMnyCozO2 (NMC, x ≥ 0.6)已被視為下世代商用正極材料,因此合成出純相 NMC 三元正極材料為一重要研究課題。最近,單晶顆粒正極已成為一個重要的目標,因為它們的高結構完整性,可以改善多晶顆粒內電化學引起的破裂導致的嚴重容量下降,但傳統的合成方法中因高溫煅燒、助熔劑的殘留嚴重阻礙了其工業應用。本論文採用 Modified Pechini Sol-gel 法來解決傳統合成上的難題,並運用平衡常數反應式計算各類合成條件對溶液中各物種平衡濃度的影響,判斷出最佳的合成條件,以優化煅燒條件以成功合成出純相近單晶NMC811,並擁有高層狀結構結晶度、低鋰鎳金屬離子混合的微米級粉體。


    The Ni-rich layered structure cathode material Ni-rich LiNixMnyCozO2(NMC, x ≥ 0.6) has been considered the next-generation commercial cathode material for lithium-ion batteries. Therefore, the synthesis of single-phase NMC ternary cathode materials is a significant research topic. Recently, single-crystal particle cathodes have become a crucial research topic as their high structural integrity can improve the severe capacity degradation resulting from electrochemically-induced intergranular cracking within the polycrystalline particles. However, high-temperature calcined and flux residue products in traditional single-crystal synthesis methods seriously hinder its industrial applications. This study employs a modified Pechini sol-gel method to solve the problem of traditional synthesis methods to produce single-crystal NMC cathodes. Furthermore, using the thermodynamic equilibrium constant method to calculate the impact of various synthesis conditions on the equilibrium concentration of each species in the solution. Finally, by optimized calcination conditions, micron quasisingle-crystal NMC811 powder with high-level structure crystallinity and low cation mixing was successfully synthesized.

    摘要 ....................................................................................................................................... I ABSTRACT ..........................................................................................................................II 誌謝 ......................................................................................................................................III 目錄 ..................................................................................................................................... IV 圖目錄 ...................................................................................................................................V 表目錄 ................................................................................................................................VII 1. Introduction ...................................................................................................................1 2. Experimental ..................................................................................................................3 2.1 Theoretical Calculation of Equilibrium Concentration.................................3 2.2 Equilibrium Constant Equations Calculation...................................................6 2.3 Materials Synthesis .................................................................................................13 2.4 Materials Characterizations..................................................................................14 3. Results and Discussion..............................................................................................14 3.1 pH-dependent Mole Fraction of Sol-gel Species.........................................14 3.2 Synthesis and Characterizations of Quasi-single-crystal NMC811........16 3.3 Binary Salts: Acetates M(CH3COO)2 and Nitrates M(NO3)2 ...................18 3.4 The Ratio of Chelating Agent Citric Acid (CA) ................................................19 3.5 Equilibrium Constant Temperature Compensation......................................20 3.6 The Optimal Calcination Conditions (Time and Temperature) ................21 3.7 Annealing .....................................................................................................................25 4. Conclusion ......................................................................................................................26 5. References........................................................................................................................27

    [1] Jianyu Li, Arumugam Manthiram. (2019). A Comprehensive Analysis of the
    Interphasial and Structural Evolution over Long-Term Cycling of Ultrahigh-Nickel Cathodes in Lithium-Ion Batteries. Advanced Energy Materials, 9, 1902731.
    [2] Lianfeng Zou, Wengao Zhao, Haiping Jia, Jianming Zheng, Linze Li, Daniel P. Abraham, Guoying Chen, Jason R. Croy, Ji-Guang Zhang, and Chongmin Wang. (2020). The Role of Secondary Particle Structures in Surface Phase Transitions of Ni-Rich Cathodes. Chemistry of Materials, 32, 2884-2892.
    [3] Jayse Langdon, Arumugam Manthiram. (2021). A perspective on single-crystal layered oxide cathodes for lithium-ion batteries. Energy Storage Materials, 37, 143-160.
    [4] Feng Xu, Hongge Yan, Jihua Chen, Zhengfu Zhang, Changling Fan. (2019).
    Ultrafne LiNi1/3Co1/3Mn1/3O2 powders via an enhanced thermal decomposition solid state reaction. Applied Electrochemistry, 49, 647-656
    [5] Longwei Liang, Ke Du, Zhongdong Peng, Yanbing Cao, Jianguo Duan,
    Jianbing Jiang, Guorong Hu. (2014). Co–precipitation synthesis of
    Ni0.6Co0.2Mn0.2(OH)2 precursor and characterization of LiNi0.6Co0.2Mn0.2O2 cathode material for secondary lithium batteries. Electrochimica Acta, 130, 82-89.
    [6] Xiaoyu Cao, Yang Zhao, Limin Zhu, Lingling Xie, Xiaoli Cao, Shaoyi Xiong,
    Chiwei Wang. (2016). Synthesis and Characterization of LiNi1/3Co1/3Mn1/3O2 as Cathode Materials for Li-Ion Batteries via an Efficacious Sol-Gel Method. International Journal of Electrochemical Science, 11, 5267-5278.
    [7] Peng Yue, Zhixing Wang, Wenjie Peng, Lingjun Li, Wei Chen, Huajun Guo,
    Xinhai Li. (2011). Spray-drying synthesized LiNi0.6Co0.2Mn0.2O2 and its
    electrochemical performance as cathode materials for lithium ion batteries. Powder 28 Technology, 214, 279-282.
    [8] Hao Li, Yongqi Dai, Xuetian Li, Zhongcai Shao. (2021). Preparation of
    LiNi0.5Co0.2Mn0.3O2 by freeze-drying method. Colloids and Surfaces A:
    Physicochemical and Engineering Aspects, 629, 127486.
    [9] Xin Wei, Shichao Zhang, Zhijia Du, Puheng Yang, Jing Wang, Yanbiao Ren.
    (2013). Electrochemical performance of high-capacity nanostructured
    Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium ion battery by
    hydrothermal method. Electrochimica Acta, 107, 549-554.
    [10] Limin Zhu, Guang Yang, Jianping Liu, Chenguang Bao, Lingling Xie,
    Xiaoyu Cao. (2019). Ethylene Glycol-Assisted Sol-Gel Method for Preparing
    LiNi1/3Co1/3Mn1/3O2 as Cathode Material for Lithium-Ion Batteries with Excellent Electrochemical Performance. ChemistrySelect, 4, 11475-11482.
    [11] Jia Guo, Wei Li. (2022). Synthesis of Single-Crystal LiNi0.7Co0.15Mn0.15O2 Materials for Li-Ion Batteries by a Sol–Gel Method. ACS Applied Energy Materials, 5, 397-406.
    [12] Do-Hoon Kim, Euh-Duck Jeong, Sang-Pil Kim, Yoon-Bo Shim. (2000).
    Effect of pH on the Synthesis of LiCoO2 with Malonic Acid and Its Charge/Discharge Behavior for a Lithium Secondary Battery. Bulletin of the
    Korean Chemical Society, 21, 1125-1132.
    [13] Linjing Chen, Wangjun Feng, Zhongsheng Pu, Xuan Wang, Changkun Song. (2019). Impact of pH on preparation of LiFePO4@C cathode materials
    by a sol-gel route assisted by biomineralization. Ionics, 25, 5625-5632.
    [14] M. Seyedahmadian, Shadi Houshyarazar, Ahmad Amirshaghaghi. (2013).
    Synthesis and Characterization of Nanosized of Spinel LiMn2O4 via Sol-gel and Freeze Drying Methods. Bulletin of the Korean Chemical Society, 34, 622-628.
    29
    [15] Changkun Song, Wangjun Feng, Wenxiao Su, Linjing Chen, Miaomiao Li.
    (2019). Influence of the pH of Li-rich Li1.2Mn0.54Ni0.13Co0.13O2 on the
    electrochemical performance by sol–gel method. Integrated Ferroelectrics, 200, 117-127.
    [16] Kyoung-Mo Nam, Hyun-Jin Kim, Dong-Hyun Kang, Yong-Seok Kimb,
    Seung-Wan Song. (2014). Ammonia-free coprecipitation synthesis of a Ni–Co–Mn hydroxide precursor for high-performance battery cathode materials. Green Chemistry, 2, 17.
    [17] Zhang Haijun, Jia Xiaolin, Yan Yongjie, Liu Zhanjie, Yang Daoyuan, Li
    Zhenzhen. (2004). The effect of the concentration of citric acid and pH values on the preparation of MgAl2O4 ultrafine powder by citrate sol–gel process. Materials Research Bulletin, 39, 839-850.
    [18] Jian Gao, Jianjun Li, Fu Song, Jianxiong Lin, Xiangming He, Changyin Jiang. (2015). Strategy for synthesizing spherical LiNi0.5Mn1.5O4 cathode material for lithium ion batteries. Materials Chemistry and Physics, 152, 177-182.
    [19] Takahiro Ishizaki, Takeshi Ohtomo, Yusuke Sakamoto, Akio Fuwa. (2004).
    Effect of pH on the Electrodeposition of ZnTe Film from a Citric Acid Solution.
    Materials Transactions, 45, 277-280.
    [20] Wen-Jiung Lee, Tsang-Tse Fang. (1995). The effect of the molar ratio of
    cations and citric acid on the synthesis of barium ferrite using a citrate process. Journal of Materials Science, 30, 4349-4354.
    [21] Yuzeng Zhao, Lingling Jia, Kuaiying Liu, Pan Gao, Honghua Ge, Lijun Fu.
    (2016). Inhibition of calcium sulfate scale by poly (citric acid). Desalination, 392, 1-7.
    [22] Masato Kakihana, Masahiro Yoshimura. (1999). Synthesis and Characteristics of Complex Multicomponent Oxides Prepared by Polymer Complex Method. Bulletin of the Chemical Society of Japan, 72, 1427-1443.
    [23] Bureau et al., (2013). National Institute of Standards and Technology. NIST
    Research Library.
    [24] Jiaxin Zheng, Yaokun Ye, Tongchao Liu, Yinguo Xiao, Chongmin Wang, Feng Wang, and Feng Pan. (2012). Ni/Li Disordering in Layered Transition Metal Oxide: Electrochemical Impact, Origin, and Control. Accounts of Chemical Research, 52, 2201-2209.
    [25] Aslihan Guler, Hatice Gungor, Seyma Ozcan, Aslan Coban, Mehmet Oguz
    Guler, Hatem Akbulut. (2018). A high-performance composite positive electrode based on graphene and Li (Ni1/3Co1/3Mn1/3)O2. Energy Research, 42, 4499-4511.

    無法下載圖示 全文公開日期 2034/03/21 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE