研究生: |
陳致榮 Zhi-Rong Chen |
---|---|
論文名稱: |
切線奈米流道連結扇形圓弧建模與垂直直線奈米流道之加工驗證 Machining Simulation Model and Atomic Force Microscopic Experimental Verification of Integration of Two Tangent Nanochannels Connected with Fan-shaped Arc Nanochannels and Connected with a Vertical Straight-line Nanochannel in The Middle |
指導教授: |
郭俊良
Chun-Liang Kuo 林榮慶 Zone-Ching Lin |
口試委員: |
林榮慶
Zone-Ching Lin 黃佑民 You-Min Huang |
學位類別: |
碩士 Master |
系所名稱: |
工程學院 - 機械工程系 Department of Mechanical Engineering |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 171 |
中文關鍵詞: | 切線奈米流道 、扇形圓弧奈米流道 、垂直直線奈米流道 、加工策略 、兩道次偏移加工法 、原子力顯微鏡 |
外文關鍵詞: | tangent nanochannel, fan-shaped arc nanochannel, vertical straight-line nanochannel, machining strategy, two-pass offset machining method, atomic force microscopy (AFM) |
相關次數: | 點閱:831 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文應用比下壓能公式及兩道次偏移加工法,建立加工整合兩個切線奈米流道連結扇形圓弧奈米流道以及中間連結一個垂直直線奈米流道梯型凹槽到預定寬度及預定深度的模擬模式及公式。在切線連接扇形圓弧加工時,由於AFM機台只能進行微小直線段加工,故本文推導出曲線與微小線段的弦高誤差的計算公式,進而提出模擬計算出由多個微小線段連結而成的近似扇形圓弧的方法。
而在垂直段的部分,本文提出形狀堆疊觀念以及改變下壓力方法,在兩個扇形圓弧奈米流道中間堆疊上一個垂直直線奈米流道,推導出加工直線段奈米流道梯型凹槽到預定寬度及預定深度所需的各項加工參數的相關公式及模擬模式。本文的形狀堆疊觀念為將計算出的垂直直線奈米流道的第一切削道次和上方切線連結扇形圓弧奈米流道的第一切削道次與第二切削道次的偏移量相同,故垂直直線奈米流道的第一切削道次的偏移量會跟切線連結扇形圓弧奈米流道第一切削道次以及第二切削道次間的偏移量Pn相同。因為垂直直線奈米流道的各切削道次進行偏移量加工時,垂直直線奈米流道的前三個切削道次以及後面六個切削道次在移除垂直直線奈米流道的體積時,有跟扇形圓弧中間部分已切削到預定深度的移除體積相交,所以我們需要在每當偏移一個偏移量Pn的切削道次時,就需要改變一次下壓力,且經模擬後,垂直直線奈米流道只需要一個切削層便可達到預定深度。
本文也提出應用較小下壓力可去除垂直直線奈米流道的微小凸起側邊的方法。其為沿著垂直直線奈米流道的各加工長度的起始點和終點所連接線段進行垂直直線的加工,其微小下壓力會造成垂直直線奈米流道的垂直線的側邊深度略微增加側邊,但此微小下壓力的大小要控制使增加的深度小於0.54nm,則可使微小的凸起側邊消除變成垂直直線的側邊。本文也提出針對整合兩個切線奈米流道連結扇形圓弧奈米流道以及中間連結一個垂直直線奈米流道進行AFM量測實驗時的量測斷面方法及所需的直線方程式。
最後並量測AFM實驗加工所得之結果,將量測結果和模擬結果相比較;驗證本文所提出整合兩個切線奈米流道連結扇形圓弧奈米流道以及中間連結一個垂直直線奈米流道到預定寬度及預定深度的模擬模式和公式及AFM實驗加工方法為合理可接受的。
The work applies the specific downward force energy (SDFE) equation and two-pass offset machining method to establish a simulation model for machining of integrated two tangent nanochannels and fan-shaped arc nanochannels connecting with a vertical straight-line nanochannel trapezium groove for industrial applications. During the tangent segment is connecting with the fan-shaped arc in machining, the atomic force microscopy (AFM) machine was performed to break the cutting counter into tiny straight-line segments. Based on this cutting strategy, the derived analytical equation can eliminate chord height errors, between the curves and tiny line segments. Furthermore, a simulation method was proposed for the lease errors on the connected multiple tiny line segments, compared to the initial profile of the near-fan-shaped arc. When resolving the vertical line segments with the lease errors, a shape stacking concept and a method of changing the downward force were proposed. In this concept, the vertical straight-line nanochannel would be superimposed on the middle of two fan-shaped arc nanochannels whereby a straight-line nanochannel trapezium groove, the expected width and depth were derived via analytical equations and simulation model for the required machining parameters.
The superposition of the shape stacking concept was developed to have the same offset amount between the first cutting pass of each calculated vertical straight-line nanochannel and the 2nd cutting pass of the upper tangent segment connecting with the fan-shaped arc nanochannels. Since the offset amount of the vertical straight-line nanochannel at the 1st cutting pass was the same as the offset amount Pn of the upper tangent segment in connecting with the fan-shaped arc nanochannels, the total deviation of the amplitude in the resultant vector would be constant. By offsetting the amount in machining of the vertical straight-line nanochannel in each cutting pass, the certain volumes would be removed with the certain depth at the central part of the fan-shaped arc. As a result the downward force needed to reset according to the offset amount Pn in order to maintain the exact cutting depth and width. After simulation, the vertical straight-line nanochannel would be machined up to the expected depth in each machining layer via each cutting pass only.
This study also proposed the method of applying a minute downward force to remove the slightly raised edge from the vertical straight-line nanochannel. This method was to conduct the machining of vertical straight-line segments in the line segments which connected with the starting points and ending points in different machining lengths along the vertical straight-line nanochannel. The applied tiny downward force would slightly increase with the depth of the vertical line’s edge in the vertical straight-line nanochannel by up to 0.54nm. In such a case, the slightly raised edge would be removed and replaced by a vertical straight-line edge. Also, experiments of the cross-section measurement and the required straight line equation in the AFM measurement were developed and reported.
Finally, the measurement results in AFM experimental machining with the simulation results were obtained and proven. The simulation models and equations for the integration of tangent nanochannels connecting with fan-shaped arc nanochannels and a vertical straight-line nanochannels under the expected depth were established.
[1] Binning, G., Quate, C. F. and Gerber, C., ”Atomic Force Microscope”, Physical Review Letters, Vol. 56, No. 6, pp.930-933 (1986).
[2] Nanjo, H., Nony, L., Yoneya, M. and Aime, J. P.,”Simulation of Section Curve by Phase Constant Dynamic Mode Atomic Force Microscopy in Non-contact Situation”, Applied Surface Science, Vol. 210, No. 1, pp. 49-53 (2003).
[3] Lübben, J. F. and Johannsmann, D., “Nanoscale High-frequency Contact Mechanics Using an AFM Tip and a Quartz Crystal Resonator”, Langmuir, Vol. 20, No. 9, pp. 3698-3703 (2004).
[4] Tseng, A. A., Jou, S., Notargiacomo, A. and Chen, T. P., ”Recent Developments in Tip-based Nanofabrication and Its Roadmap”, Journal of Nanoscience & Nanotechnology, Vol. 8, No. 5, pp. 2167–2186 (2008).
[5] Fang, T. H., Weng, C. I. and Chang, J. G., ”Machining Characterization of Nano-lithography Process by Using Atomic Force Microscopy”, Nanotechnology, Vol. 11, No. 5, pp. 181-187 (2000).
[6] Schumacher, H. W., Keyser, U. F. and Zeitler, U., “Controlled mechanical AFM machining of two-dimensional electron systems: Fabrication of a single-electron transistor”, Physica E., Vol. 6, pp. 860-863 (2000).
[7] Yongda, Y., Tao, S., Liang, Y. C. and Shen, D., “Investigation on AFM based micro/nano CNC machining system”, International Journal of Machine Tools and Manufacture, Vol. 47, No. 11, pp.1651-1659 (2007).
[8] Wang, Z. Q., Jiao, N. D., Tung, S. and Dong, Z. L., “Research on the atomic force microscopy-based fabrication of nanochannels on silicon oxide surfaces”, Chinese Science Bulletin, Vol. 55, No. 30, pp. 3466-3471 (2010).
[9] Tseng, A. A., “A comparison study of scratch and wear properties using atomic force microscopy”, J. Applied Surface Science, Vol. 256, Issue 13, pp. 4246- 4252 (2010).
[10] Ermer, D. S., “Optimization of the constrained machining economics problem by geometric programming”, Transactions of ASME Journal of Engineering for Industry, Vol. 93, pp. 1067-1072 (1971).
[11] Chen, M. C. and Tsai, D. M., “A simulated annealing approach for optimization of multipass turning operations”, International Journal of Production Research, Vol. 34, pp. 2803-2825 (1996).
[12] Shunmugam, M. S., Bhaskara, S. V. and Narendran, T. T., “Selecion of optimal conditions in multi-pass face-milling using a genetic algorithm”, International Journal of Machine Tools and Manufacture, Vol.40, pp. 401-414 (2000).
[13] Satishkumar, S., Asokan, P. and Kumanan, S., “Optimization of depth of cut in multi-pass turning using nontraditional optimization technology”, International Journal of Advanced Manufacturing Technology, Vol.29, pp. 230-238 (2006).
[14] Özen, S., and Bayhan, G. M., “Optimization of depth of cut in multi-pass machining using Hopfield type neural networks”, Proceedings of the 2011 International Conference on Industrial Engineering and Operations Management Kuala Lumpur, Malaysia, January, pp. 22-24 (2011).
[15] Li, J. G., Yong, L., Hang, Z., Peng, L. and Yao, Y. X., “Optimization of cutting parameters for energy saving”, Int J Adv Manuf Technol, Vol. 70, pp. 117-124 (2014).
[16] Geng, Y. Q., Yan, Y. D., Xing, Y. M., Zhao, X. S. and Hu, Z. J., “Modelling and experimental study of machined depth in AFM-based milling of nanochannels”, International Journal of Machine Tools & Manufacture, Vol. 73, pp. 87-96 (2013).
[17] Bourne, K. A., Kapoor, S. G. and DeVor, R. E., “Study of a High Performance AFM Probe-Based Microscribing Process”, J. Manuf. Sci., Vol. 132, No. 3 (2010).
[18] Lin, Z. C. and Hsu, Y. C., “A calculating method for the fewest cutting passes on sapphire substrate at a certain depth using specific down force energy with an AFM probe”, Journal of Materials Processing Technology, Vol. 212, pp. 2321-2331 (2012).
[19] 馬士閎, “單晶矽奈米流道梯型凹槽最少切削道次估算及驗證”國立台灣科技大學機械工程研究所,碩士論文,民國105年。
[20] 方信人, “單晶矽奈米流道曲線加工到預定寬度及深度之模擬模式建立及實驗驗證”國立台灣科技大學機械工程研究所,碩士論文,民國107年。
[21] Yeh, S. S. and Hsu, P. L., “Adaptive-feedrate Interpolation for Paramertic Curves with a Confined Error” Computer-Aided Design, Vol. 34, pp.229-237(2002).
[22] 王昱菘,“整合喇叭型奈米流道及水平和垂直奈米流道到預定寬度及預定深度模擬模式建立及實驗驗證” 國立台灣科技大學機械工程研究所,碩士論文,民國108年。
[23] 秦英傑,“雙圓弧與直線連結奈米流道之建模及實驗驗證” 國立台灣科技大學機械工程研究所,碩士論文,民國109年。
[24] Teerasong, S. and McClain, R., “A Student-Made Microfluidic Device for Electrophoretic Separation of Food Dyes”,Journal of Chemical Education, Vol. 88, pp.465-467(2011).
[25] He, Q., Chen, S., Su, Y., Fang, Q., & Chen, H.,“Fabrication of 1D nanofluidic channels on glass substrate by wet etching and room-temperature bonding”, Analytica chimica acta, 628(1), 1-8. (2008).
[26] Digital Instruments Dimension™ 3100 Manual. Version 4.43B, Digital Instruments Veeco Metrilogy Group (2000).
[27] 蔡竺孝, “以原子力顯微鏡探針利用比下壓能之觀念建立藍寶石基板凹槽圖形加工方法及實驗研究” 國立台灣科技大學機械工程研究所,碩士論文,民國100年