簡易檢索 / 詳目顯示

研究生: Yibas Mamuye Tafes
Yibas Mamuye Tafes
論文名稱: 瀝青改質之性能平衡挑戰: 奈米氧化鋁複合改質法對提升瀝青黏結料與混和料之績效影響
Balancing Asphalt Modification Challenges: Nano-Al2O3 Composite Approach for Enhanced Asphalt Binder and Mixture Performance
指導教授: 廖敏志
Min-Chih Liao
口試委員: 陳建旭
Jian-Shiuh Chen
黃建維
Chien-Wei Huang
林彥宇
Yen-Yu Lin
蘇育民
Yu-Min Su
陳君弢
Chun-Tao Chen
廖敏志
Min-Chih Liao
陳介豪
Jieh-Haur Chen
學位類別: 博士
Doctor
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 249
外文關鍵詞: Asphalt Binder, Composite Modification, Asphalt Concrete, Indirect Tensile Monotonic Tests, Asphalt Modifiers, Nano-Al2O3, Balanced Mix Design, Storage Stability
相關次數: 點閱:143下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


Asphalt modifiers play a crucial role in improving certain characteristics of asphalt binder, while they can concurrently induce detrimental effects on other attributes. A pivotal concern is the potential occurrence of storage stability, which significantly impedes the chemical and rheological properties of modified asphalt binders, thereby diminishing pavement performance and longevity. To mitigate these challenges, composite modification, entailing the incorporation of multiple additives, has emerged as a promising solution. This study explores the potential of a nano-Al2O3 composite to address these challenges and enhance both asphalt binder and mixture performance. The investigation evaluates the impact of varying proportions of nano-Al2O3 composite on the physical and rheological properties, as well as high-temperature storage stability, of different asphalt binders, including neat AC20, polymer-modified (PMA), and CR-modified binders. This enhancement is evident through the observed reductions in penetration values, elevations in softening points, increases in viscosity, and improvements in storage stability. Furthermore, the study assesses the influence of nano-Al2O3 composite modification on resistance to permanent deformation, cracking, moisture damage, and abrasion resistance in dense-graded (DGA) and gap-graded (GAP) HMA mixtures. This comprehensive evaluation yields critical insights into the potential benefits of integrating nano-Al2O3 composites in asphalt mixtures. Nano-Al2O3 inclusions showed enhanced resistance against rutting, fatigue cracking, moisture damage, and abrasion in asphalt concrete. The ideal amounts of nano-Al2O3 needed for the best improvements vary depending on the base asphalt binder types, aggregate gradations, and types of distress. In parallel, the indirect tensile monotonic tests were assessed for the application of a balanced mix design (BMD). These tests simplify the implementation of BMD principles in asphalt mixture design and construction projects by advocating for the use of simple, reliable, efficient, and cost-effective tests. The findings suggest that adopting BMD, supported by indirect tensile monotonic tests, is feasible and holds significant promise in achieving more resilient and long-lasting pavements. However, it was necessary to evaluate the performance criteria based on local conditions and traffic considerations.

Abstract I Acknowledgments II Table of Contents III List of Figures VII List of Tables XIV Abbreviations and Symbols XVI Chapter 1 Introduction 1 1.1. Background 1 1.2. Problem Statement 3 1.3. Research Objectives 4 1.4. Scope and Significance of the Study 5 Chapter 2 Literature Review 8 2.1. Overview of Asphalt Binder 8 2.2. Asphalt Binder Modification 10 2.2.1. Overview of Polymer Modified Asphalt Binder 12 2.2.2. Overview of Crumb Rubber as Modifier 16 2.2.3. Overview of Nanomaterials as Modifiers 20 2.3. Composite Modification 27 2.4. Overview of Nano-Al2O3 as Modifiers 33 2.5. Overview of Asphalt Concrete 36 2.5.1. Types of HMA 37 2.5.2. HMA Mix Design 41 2.6. Fundamental Testing of Bitumen 44 2.7. Dynamic Shear Rheometer (DSR) 48 2.7.1. The Superpave Rutting Parameter, |G*|/sinδ 51 2.7.2. The Superpave Fatigue Parameter, |G*|sinδ 52 2.7.3. Creep and Recovery Test 52 2.7.4. Linear Amplitude Sweep (LAS) 55 2.7.5. Binder Yield Energy Test (BYET) 56 2.8. Aging of Asphalt Binder 57 2.9. Performance Test of Hot Mix Asphalt 59 2.9.1. Indirect Tensile Test (IDT) 62 2.9.2. Marshall Stability and Flow 64 2.9.3. Hamburg Wheel Tracking Test (HWTT) 64 2.9.4. High-Temperature Indirect Tensile Test (HT-IDT) 66 2.9.5. Indirect Tensile Asphalt Rutting Test (IDEAL-RT) 67 2.9.6. Indirect Tensile Asphalt Cracking Test (IDEAL-CT) 69 2.9.7. Low-Temperature Indirect Tensile Test (LT-IDT) 71 2.9.8. Moisture Damage Resistance Test 71 2.9.9. Cantabro Abrasion Test 72 2.9. Aging of Asphalt Concrete 72 2.10. Balanced Mix Design (BMD) 73 2.11. Summary 74 Chapter 3 Materials and Experimental Design 76 3.1. Materials 76 3.1.1. Asphalt Binder 76 3.1.2. Aggregate and Filler 76 3.1.3. Nano-Al2O3 and Crumb Rubber 79 3.2. Binder Modification Procedure 86 3.3. Mix Design and Asphalt Specimen Preparation 87 3.4. Performance Testing Criteria for BMD 94 3.5. Testing Program 95 3.5.1. Conventional Properties of Asphalt Binder 95 3.5.2. Rheological Properties of Asphalt Binders 101 3.5.3. Asphalt Concrete Tests 106 Chapter 4 Effect of Nano-Al2O3 Composite on the Properties of AC20 Asphalt Binder 118 4.1. Effect of nano-Al2O3 on Properties of AC20 Asphalt Binder 118 4.1.1. Effect of nano-Al2O3 on Basic Properties of AC20 Asphalt Binder 118 4.1.2. Effect of nano-Al2O3 on Rheological Properties of AC20 Asphalt Binder 126 4.2. Effect of nano-Al2O3 on Performance of AC20 Asphalt Concrete Mixture 131 4.2.1. Asphalt Concrete Mix Design 131 4.2.2. Effect of nano-Al2O3 on Rutting Resistance of AC20 Asphalt Concrete Mixture 134 4.2.3. Effect of nano-Al2O3 on Cracking Resistance of AC20 Asphalt Concrete Mixture 138 4.2.4. Effect of nano-Al2O3 on Moisture Damage Resistance of AC20 Asphalt Concrete Mixture 139 4.2.5. Effect of nano-Al2O3 on Abrasion Resistance of AC20 Asphalt Concrete Mixture 141 Chapter 5 Effect of Nano-Al2O3 Composite on the Properties of Polymer Modified Asphalt Binder 142 5.1. Effect of nano-Al2O3 on Properties of PMA Binder 142 5.1.1. Effect of nano-Al2O3 on Basic Properties of PMA Binder 142 5.1.2. Effect of nano-Al2O3 on Rheological Properties of PMA Binder 150 5.2. Effect of nano-Al2O3 on the Performance of PMA Binder Concrete Mixture 154 5.2.1. Asphalt Concrete Mix Design 154 5.2.2. Effect of nano-Al2O3 on Rutting Resistance of PMA Binder Concrete Mixture 156 5.2.3. Effect of nano-Al2O3 on Cracking Resistance of PMA Binder Concrete Mixture 159 5.2.4. Effect of nano-Al2O3 on Moisture Damage Resistance of PMA Binder Concrete Mixture 161 5.2.5. Effect of nano-Al2O3 on Abrasion Resistance of PMA Binder Concrete Mixture 162 Chapter 6 Effect of Nano-Al2O3 Composite on the Properties of Crumb Rubber Modified Asphalt Binder 163 6.1. Effect of nano-Al2O3 on Properties of CR-Modified Asphalt Binder 163 6.1.1. Effect of nano-Al2O3 on Basic Properties of CR-Modified Asphalt Binder 163 6.1.2. Effect of nano-Al2O3 on Rheological Properties of CR-Modified Asphalt Binder 171 6.2. Effect of nano-Al2O3 on the Performance of CR-Modified Asphalt Concrete Mixture 177 6.2.1. Asphalt Concrete Mix Design 177 6.2.2. Effect of nano-Al2O3 on Rutting Resistance of CR-Modified Asphalt Concrete Mixture 181 6.2.3. Effect of nano-Al2O3 on Cracking Resistance of CR-Modified Asphalt Concrete Mixture 184 6.2.4. Effect of nano-Al2O3 on Moisture Damage Resistance of CR-Modified Asphalt Concrete Mixture 186 6.2.5. Effect of nano-Al2O3 on Abrasion Resistance of CR-Modified Asphalt Concrete Mixture 188 Chapter 7 Indirect Tensile Monotonic Loading Tests for Quality Control of HMA 190 7.1. Background 190 7.2. Mix Design 190 7.3. Asphalt Concrete Performance Tests 194 7.3.1. Rutting Performance 194 7.3.2. Fatigue Resistance 196 7.3.3. Low-Temperature Cracking Resistance 198 7.3.4. Moisture Damage Resistance 199 7.4. Evaluation of Asphalt Concrete Mixtures for Balanced Performance 201 Chapter 8 Comparative Studies on the Composite Modification of Nano-Al2O3 with AC20, PMA, and CR-Modified Asphalt Binders 204 8.1. Comparative Analysis Based on Ranking 204 8.2. Balanced Evaluation of Key Performance Indicators 209 8.3. Correlation Between Selected Performance Indicators 210 8.4. Summary of Findings 214 Chapter 9 Conclusions and Recommendations 216 9.1. Conclusions 216 9.2. Recommendations 218 References 219

1. AASHTO. (2010). Standard Practice for Mixture Conditioning of Hot Mix Asphalt (HMA). AASHTO R30. AASHTO Washington, DC.
2. AASHTO. (2011a). Standard method of test for resistance of compacted asphalt mixtures to moisture-induced damage. AASHTO T283. Washington, DC: AASHTO.
3. AASHTO. (2014). Standard Practice for Multiple Stress Creep Recovery (MSCR) Test of Asphalt Binder Using a Dynamic Shear Rheometer (DSR). AASHTO T 350. AASHTO Washington, DC.
4. AASHTO. (2017). Standard method of test for hamburg wheel-track testing of compacted hot-mix asphalt (HMA). AASHTO T324. Washington, DC: AASHTO.
5. AASHTO. (2018a). Standard Method of Test for Determining the Abrasion Loss of Asphalt Mixture Specimens. AASHTO TP 108. Washington, DC: AASHTO.
6. AASHTO. (2018b). Standard Practice for Evaluating the Elastic Behavior of Asphalt Binders Using the Multiple Stress Creep Recovery (MSCR) Test. AASHTO R 92. AASHTO Washington, DC.
7. AASHTO. (2018c). Standard method of test for Estimating Fatigue Resistance of Asphalt Binders Using the Linear Amplitude Sweep. AASHTO TP 101-12. AASHTO Washington, DC.
8. AASHTO. (2018d). Standard method of test for Measuring Asphalt Binder Yield Energy and Elastic Recovery Using the Dynamic Shear Rheometer. AASHTO TP 123-16. AASHTO Washington, DC.
9. AASHTO. (2020a). Standard Method of Test for Determining the Indirect Tensile Nflex Factor to Assess the Cracking Resistance of Asphalt Mixtures. AASHTO TP 141. Washington, DC: AASHTO.
10. AASHTO. (2020b). Balanced Design of Asphalt Mixtures. AASHTO PP 105. Washington, DC: AASHTO.
11. Abdelrahman, M. A. and Carpenter, S. H. (1999). "Mechanism of interaction of asphalt cement with crumb rubber modifier." Transportation Research Record, 1661(1), 106-113.
12. Abdulhaq, H. A. (2015). "Predicting complex shear modulus using artificial neural networks." Journal of Civil Engineering and Construction Technology, 6(3), 15-26.
13. Abed, Y. H. and Al-Haddad, A. H. A. (2020). "Temperature Susceptibility of Modified Asphalt Binders." IOP Conference Series: Materials Science and Engineering, 671. https://doi.org/10.1088/1757-899X/671/1/012121
14. Airey, G., Singleton, T. and Collop, A. (2002). "Properties of polymer modified bitumen after rubber-bitumen interaction." Journal of materials in civil engineering, 14(4), 344-354.
15. Airey, G. D. (1997). "Rheological characteristics of polymer modified and aged bitumens."Ph.D. Thesis, University of Nottingham Nottingham, UK.
16. Airey, G. D. (2003). "Rheological properties of styrene butadiene styrene polymer modified road bitumens☆." Fuel, 82(14), 1709-1719. https://doi.org/https://doi.org/10.1016/S0016-2361(03)00146-7
17. Airey, G. D. (2009). "Chapter 23: Bitumen properties and test methods." ICE manual of Construction Materials: Volume I: Fundamentals and theory; Concrete; Asphalts in road construction; Masonry, Thomas Telford Ltd, 263-272.
18. Airey, G. D., Rahman, M. M. and Collop, A. C. (2003). "Absorption of Bitumen into Crumb Rubber Using the Basket Drainage Method." International Journal of Pavement Engineering, 4(2), 105-119. https://doi.org/10.1080/1029843032000158879
19. Akazawa, T. (1943). "New test method for evaluating internal stress due to compression of concrete (the splitting tension test)(part 1)." J Jpn Soc Civ Eng, 29, 777-787.
20. Al-Khayat, H., Newcomb, D. E., Zhou, F. and Deusen, D. V. (2021). "Evaluation of the Minnesota Asphalt Mixtures Based on Balanced Mix-Design Approach." Journal of Transportation Engineering, Part B: Pavements, 147(3), 04021045. https://doi.org/doi:10.1061/JPEODX.0000298
21. Al-Mansob, R. A., Ismail, A., Rahmat, R. A. O. K., Borhan, M. N., Alsharef, J. M. A., Albrka, S. I. and Karim, M. R. (2017). "The performance of Epoxidised Natural Rubber modified asphalt using nano-alumina as additive." Construction and Building Materials, 155, 680-687. https://doi.org/10.1016/j.conbuildmat.2017.08.106
22. Ali, S. I. A., Ismail, A., Karim, M. R., Yusoff, N. I. M., Al-Mansob, R. A. and Aburkaba, E. (2016). "Performance evaluation of Al2O3 nanoparticle-modified asphalt binder." Road Materials and Pavement Design, 18(6), 1251-1268. https://doi.org/10.1080/14680629.2016.1208621
23. Almusawi, A., Sengoz, B. and Topal, A. (2021). "Investigation of mixing and compaction temperatures of modified hot asphalt and warm mix asphalt." Periodica Polytechnica Civil Engineering, 65(1), 72-83. https://doi.org/10.3311/PPci.15118
24. Ameri, M., Hesami, S. and Goli, H. (2013). "Laboratory evaluation of warm mix asphalt mixtures containing electric arc furnace (EAF) steel slag." Construction and Building Materials, 49, 611-617. https://doi.org/10.1016/j.conbuildmat.2013.08.034
25. Amin, I., El-Badawy, S. M., Breakah, T. and Ibrahim, M. H. Z. (2016). "Laboratory evaluation of asphalt binder modified with carbon nanotubes for Egyptian climate." Construction and Building Materials, 121, 361-372. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2016.05.168
26. Amini, A., Ziari, H., Saadatjoo, S. A., Hashemifar, N. S. and Goli, A. (2021). "Rutting resistance, fatigue properties and temperature susceptibility of nano clay modified asphalt rubber binder." Construction and Building Materials, 267. https://doi.org/10.1016/j.conbuildmat.2020.120946
27. Anderson, D. A., Christensen, D. W., Bahia, H. U., Dongre, R., Sharma, M., Antle, C. E. and Button, J. (1994). "Binder characterization and evaluation, volume 3: Physical characterization." Strategic Highway Research Program, National Research Council, Washington, DC.
28. Anderson, D. A. and Kennedy, T. W. (1993). "Development of SHRP binder specification (with discussion)." Journal of the Association of Asphalt Paving Technologists, 62.
29. Anderson, D. A., Le Hir, Y. M., Marasteanu, M. O., Planche, J.-P., Martin, D. and Gauthier, G. (2001). "Evaluation of fatigue criteria for asphalt binders." Transportation Research Record, 1766(1), 48-56.
30. Anderson, R., Christensen, D. and Bonaquist, R. (2003). "Estimating the rutting potential of asphalt mixtures using Superpave gyratory compaction properties and indirect tensile strength (with discussion)." Journal of the Association of Asphalt Paving Technologists, 72.
31. Arabani, M., Tahami, S. A. and Hamedi, G. H. (2017). "Performance evaluation of dry process crumb rubber-modified asphalt mixtures with nanomaterial." Road Materials and Pavement Design, 19(5), 1241-1258. https://doi.org/10.1080/14680629.2017.1302356
32. Ashish, P. K., Singh, D. and Bohm, S. (2016). "Evaluation of rutting, fatigue and moisture damage performance of nanoclay modified asphalt binder." Construction and Building Materials, 113, 341-350. https://doi.org/10.1016/j.conbuildmat.2016.03.057
33. Asphalt-Institute. (2014). MS-2 asphalt mix design methods. Lexington Kentucky, USA.
34. ASTM. (1989). Test Method for Resistance of Plastic Flow of Bituminous Mixtures Using Marshall Apparatus. ASTM D1559-89. West Conshohocken, PA: ASTM.
35. ASTM. (2001). Standard Specification for Hot-Mixed, Hot-Laid Bituminous Paving Mixtures (Withdrawn 2009). ASTM D3515-01. West Conshohocken, PA: ASTM
36. ASTM. (2015a). Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate. ASTM C127-15. West Conshohocken, PA: ASTM.
37. ASTM. (2015b). Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate. ASTM C128-15. West Conshohocken, PA: ASTM.
38. ASTM. (2015c). Standard Test Method for Viscosity Determination of Asphalt at Elevated Temperatures Using a Rotational Viscometer. ASTM D4402 / D4402M-15. West Conshohocken, PA: ASTM.
39. ASTM. (2015d). Standard Test Method for Preparation and Determination of the Relative Density of Asphalt Mix Specimens by Means of the Superpave Gyratory Compactor. ASTM D6925-15. West Conshohocken, PA: ASTM.
40. ASTM. (2015e). Standard Test Method for Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer. ASTM D7175-15. West Conshohocken, PA: ASTM.
41. ASTM. (2016). Standard Practice for Viscosity-Temperature Chart for Asphalt Binders. D2493/D2493M − 16. West Conshohocken, PA: ASTM.
42. ASTM. (2017a). Standard Test Method for Ductility of Asphalt Materials. ASTM D113-17. West Conshohocken, PA: ASTM.
43. ASTM. (2017b). Standard Test Method for Toughness and Tenacity of Asphalt Materials. ASTM D5801-17. West Conshohocken, PA: ASTM.
44. ASTM. (2017c). Standard Test Method for Resistance of Coarse Aggregate to Degradation by Abrasion in the Micro-Deval Apparatus. ASTM D6928-17. West Conshohocken, PA: ASTM.
45. ASTM. (2017d). Standard Test Method for Density of Hydraulic Cement. ASTM C188-17. West Conshohocken, PA: ASTM.
46. ASTM. (2018a). Standard Test Method for Elastic Recovery of Asphalt Materials by Ductilometer. ASTM D6084 / D6084M-18. West Conshohocken, PA: ASTM.
47. ASTM. (2018b). Standard Specification for Viscosity-Graded Asphalt Binder for Use in Pavement Construction. ASTM D3381 / D3381M-18. West Conshohocken, PA: ASTM.
48. ASTM. (2018c). Standard Test Method for Separation of Asphalt into Four Fractions. ASTM D4124-09. West Conshohocken, PA: ASTM.
49. ASTM. (2019a). Standard Specification for Asphalt-Rubber Binder. ASTM D6114/D6114M-19. West Conshohocken, PA: ASTM.
50. ASTM. (2019b). Standard Test Method for Determination of Cracking Tolerance Index of Asphalt Mixture Using the Indirect Tensile Cracking Test at Intermediate Temperature1. ASTM D8225-19. West Conshohocken, PA: ASTM.
51. ASTM. (2019c). Standard Test Method for Theoretical Maximum Specific Gravity and Density of Asphalt Mixtures. ASTM D2041/D2041M-19. West Conshohocken, PA: ASTM.
52. ASTM. (2020a). Standard Test Method for Penetration of Bituminous Materials. ASTM D5 / D5M-20. West Conshohocken, PA: ASTM.
53. ASTM. (2020b). Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus). ASTM D36 / D36M - 14. West Conshohocken, PA: ASTM.
54. ASTM. (2020c). Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine. ASTM C131 / C131M-20. West Conshohocken, PA: ASTM.
55. ASTM. (2020d). Standard Practice for Determining the Separation Tendency of Polymer from Polymer-Modified Asphalt. ASTM D7173-20. West Conshohocken, PA: ASTM.
56. ASTM. (2020e). Standard Test Method for Multiple Stress Creep and Recovery (MSCR) of Asphalt Binder Using a Dynamic Shear Rheometer. ASTM D7405-20. West Conshohocken, PA: ASTM.
57. ASTM. (2021). Standard Test Method for Bulk Specific Gravity and Density of Non-Absorptive Compacted Asphalt Mixtures. ASTM D2726/D2726M-21. West Conshohocken, PA: ASTM.
58. ASTM. (2022). Standard Test Method for Determination of Rutting Tolerance Index of Asphalt Mixture Using the Ideal Rutting Test. ASTM D8360-22. West Conshohocken, PA: ASTM.
59. Attia, M. and Abdelrahman, M. (2009). "Enhancing the performance of crumb rubber-modified binders through varying the interaction conditions." International Journal of Pavement Engineering, 10(6), 423-434.
60. Azarhoosh, A. R., Nejad, F. M. and Khodaii, A. (2016). "Nanomaterial and fatigue cracking of hot mix asphalt." Road Materials and Pavement Design, 19(2), 353-366. https://doi.org/10.1080/14680629.2016.1261724
61. Babalghaith, A. M., Koting, S., Sulong, N. H. R., Khan, M. Z. H., Milad, A., Yusoff, N. I. M., Ibrahim, M. R. and Mohamed, A. H. b. N. (2022). "A systematic review of the utilization of waste materials as aggregate replacement in stone matrix asphalt mixes." Environmental Science and Pollution Research, 29(24), 35557-35582. https://doi.org/10.1007/s11356-022-19447-w
62. Bahia, H. (2006). "Modified asphalt binders for paving applications." Asphalt Mix Design and Construction: Past, Present, and Future, 84-154.
63. Bahia, H., Wen, H. and Johnson, C. M. (2010). "Developments in intermediate temperature binder fatigue specifications." Transportation Research Circular E-C147, 25-33.
64. Bahia, H. U. and Anderson, D. A. (1995). "The Pressure Aging Vessel (PAV): a test to simulate rheological changes due to field aging." ASTM special technical publication, 1241, 67-88.
65. Bahia, H. U., Hanson, D., Zeng, M., Zhai, H., Khatri, M. and Anderson, R. (2001). "Characterization of modified asphalt binders in superpave mix design."
66. Bartolotta, A. and Calandra, P. (2010). "Indication of Local Phase Separation in Polyimide/Silica Hybrid Polymers." Macromolecular Chemistry and Physics, 211(16), 1784-1792. https://doi.org/10.1002/macp.201000110
67. Behera, P. K., Singh, A. K. and Amaranatha Reddy, M. (2013). "An alternative method for short- and long-term ageing for bitumen binders." Road Materials and Pavement Design, 14(2), 445-457. https://doi.org/10.1080/14680629.2013.799086
68. Behnood, A. and Gharehveran, M. M. (2019). "Morphology, rheology, and physical properties of polymer-modified asphalt binders." European Polymer Journal, 112, 766-791. https://doi.org/10.1016/j.eurpolymj.2018.10.049
69. Bennert, T., Garg, N., Ericson, C. and Cytowicz, N. (2022). "Evaluation of Test Methods to Identify Asphalt Binders Prone to Surface-initiated Cracking." Transportation Research Record, 2677(3), 897-910. https://doi.org/10.1177/03611981221119191
70. Bennert, T., Haas, E. and Wass, E. (2018). "Indirect Tensile Test (IDT) to Determine Asphalt Mixture Performance Indicators during Quality Control Testing in New Jersey." Transportation Research Record, 2672(28), 394-403. https://doi.org/10.1177/0361198118793276
71. Bhat, F. S. and Mir, M. S. (2020). "Investigating the effects of nano Al2O3 on high and intermediate temperature performance properties of asphalt binder." Road Materials and Pavement Design, 1-22. https://doi.org/10.1080/14680629.2020.1778509
72. Bhat, F. S. and Mir, M. S. (2021). "Rheological investigation of asphalt binder modified with nanosilica." International Journal of Pavement Research and Technology, 14(3), 276-287. https://doi.org/10.1007/s42947-020-0327-2
73. Biligiri, K. P., Kaloush, K. E., Mamlouk, M. S. and Witczak, M. W. (2007). "Rational Modeling of Tertiary Flow for Asphalt Mixtures." Transportation Research Record, 2001(1), 63-72. https://doi.org/10.3141/2001-08
74. Bittner, J., Hajj, E. Y., Aschenbrener, T. B., Gopisetti, P. and Rockwood, H. (2023). "2023 Southeast Peer Exchange on Balanced Mix Design (BMD): Outcomes Summary."
75. Bowers, B. F., Diefenderfer, S. D., Moore, N. and Lynn, T. (2022). "Balanced Mix Design and Benchmarking: A Case Study in Establishing Performance Test Thresholds." Transportation Research Record, 2676(12), 586-598. https://doi.org/10.1177/03611981221096434
76. Boz, I., Coffey, G. P., Habbouche, J., Diefenderfer, S. D. and Ozbulut, O. E. (2022). "A critical review of monotonic loading tests to evaluate rutting potential of asphalt mixtures." Construction and Building Materials, 335, 127484. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2022.127484
77. Breen, J. and Stephens, J. (1966). "Split cylinder test applied to bituminous mixtures at low temperatures." Journal of Materials.
78. Broering, W. B., de Melo, J. V. S. and Manfro, A. L. (2022). "Incorporation of nanoalumina into a polymeric asphalt matrix: Reinforcement of the nanostructure, improvement of phase stability, and amplification of rheological parameters." Construction and Building Materials, 320, 126261. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2021.126261
79. Brown, E. R., Kandhal, P. S., Roberts, F. L., Kim, Y. R., Lee, D.-Y. and Kennedy, T. W. (2009). "Hot mix asphalt materials, mixture design, and construction." NAPA research and education foundation.
80. Brown, E. R., Kandhal, P. S. and Zhang, J. (2001). "Performance testing for hot mix asphalt." NCAT report, 1(05).
81. Brûlé, B. (1996). "Polymer-Modified Asphalt Cements Used in the Road Construction Industry: Basic Principles." Transportation Research Record, 1535(1), 48-53. https://doi.org/10.1177/0361198196153500107
82. BS. (1989). Methods for determination of particle shape (flakiness index), . BS 812-105.1:1989. London, UK.: British Standards Institute.
83. Cai, L., Shi, X. and Xue, J. (2018). "Laboratory evaluation of composed modified asphalt binder and mixture containing nano-silica/rock asphalt/SBS." Construction and Building Materials, 172, 204-211. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2018.03.187
84. Calandra, P., Loise, V., Porto, M., Oliviero Rossi, C., Lombardo, D. and Caputo, P. (2020). "Exploiting Nanoparticles to Improve the Properties of Bitumens and Asphalts: At What Extent Is It Really Worth It?" Applied Sciences, 10(15). https://doi.org/10.3390/app10155230
85. Carneiro, F. (1943). "A new method to determine the tensile strength of concrete." Proc., Proceedings of the 5th meeting of the Brazilian Association for Technical Rules, 126-129.
86. Chavez, F., Marcobal, J. and Gallego, J. (2019). "Laboratory evaluation of the mechanical properties of asphalt mixtures with rubber incorporated by the wet, dry, and semi-wet process." Construction and Building Materials, 205, 164-174. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2019.01.159
87. Chelovian, A. and Shafabakhsh, G. (2017). "Laboratory evaluation of Nano Al2O3 effect on dynamic performance of stone mastic asphalt." International Journal of Pavement Research and Technology, 10(2), 131-138. https://doi.org/10.1016/j.ijprt.2016.11.004
88. Chen, H., Zhang, Y. and Bahia, H. U. (2021). "The role of binders in mixture cracking resistance measured by ideal-CT test." International Journal of Fatigue, 142, 105947. https://doi.org/https://doi.org/10.1016/j.ijfatigue.2020.105947
89. Chen, S.-H., Lin, J.-d., Yang, C.-y., Hsu, S.-p. and Ni, F. m.-w. (2015). "Developing of SBR Polymer Modified Asphalt in Taiwan." 9th International Conference on Road and Airfield Pavement Technology Dalai, China.
90. Chen, T., Ma, T., Huang, X., Guan, Y., Zhang, Z. and Tang, F. (2019). "The performance of hot-recycling asphalt binder containing crumb rubber modified asphalt based on physiochemical and rheological measurements." Construction and Building Materials, 226, 83-93.
91. Cheng, Y., Yu, D., Gong, Y., Zhu, C., Tao, J. and Wang, W. (2018). "Laboratory Evaluation on Performance of Eco-Friendly Basalt Fiber and Diatomite Compound Modified Asphalt Mixture." Materials (Basel), 11(12). https://doi.org/10.3390/ma11122400
92. Christensen, D., Bonaquist, R., Anderson, D. and Gokhale, S. (2004). " Transportation Research Circular EC068: Indirect Tension Strength as a Simple Performance Test. New Simple Performance Tests for Asphalt Mixtures." Transportation Research Board of the National Academies, Washington, DC, 44-57.
93. Christensen Jr., D. and Bonaquist, R. (2002). "Use of strength tests for evaluating the rut resistance of asphalt concrete." Journal of the Association of Asphalt Paving Technologists, 71.
94. CNS. (1998). Polymer-modified paving asphalt CNS 14184. Taipei: CNS.
95. CNS. (2020). Modified asphalt cement for use in pavement construction. CNS 14184. Taipei: CNS.
96. Corbett, L. W. (1969). "Composition of asphalt based on generic fractionation, using solvent deasphaltening, elution-adsorption chromatography, and densimetric characterization." Analytical Chemistry, 41(4), 576-579. https://doi.org/10.1021/ac60273a004
97. Crucho, J., Picado-Santos, L., Neves, J. and Capitas, S. (2019). "A Review of Nanomaterials' Effect on Mechanical Performance and Aging of Asphalt Mixtures." Applied Sciences-Basel, 9(18). https://doi.org/10.3390/app9183657
98. da Silva, L., Benta, A. and Picado-Santos, L. (2018). "Asphalt rubber concrete fabricated by the dry process: Laboratory assessment of resistance against reflection cracking." Construction and Building Materials, 160, 539-550. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2017.11.081
99. Das, P. K., Tasdemir, Y. and Birgisson, B. (2012). "Low temperature cracking performance of WMA with the use of the Superpave indirect tensile test." Construction and Building Materials, 30, 643-649. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2011.12.013
100. Debbarma, K., Debnath, B. and Sarkar, P. P. (2022). "A comprehensive review on the usage of nanomaterials in asphalt mixes." Construction and Building Materials, 361, 129634. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2022.129634
101. Delgadillo, R., Cho, D. W. and Bahia, H. (2006). "Nonlinearity of Repeated Creep and Recovery Binder Test and Relationship with Mixture Permanent Deformation." Transportation Research Record, 1962(1), 2-11. https://doi.org/10.1177/0361198106196200101
102. Demir, E. C., McDermott, M. T., Kim, C. l. and Ayranci, C. (2023). "Towards better understanding the stiffness of nanocomposites via parametric study of an analytical model modeling parameters and experiments." Journal of Composite Materials, 57(6), 1087-1104. https://doi.org/10.1177/00219983221149122
103. Domínguez, F. J. N. and García-Morales, M. (2011). "5 - The use of waste polymers to modify bitumen." Polymer Modified Bitumen, T. McNally, ed., Woodhead Publishing, 98-135.
104. Dong, Q., Wu, H., Huang, B., Shu, X. and Wang, K. (2013). "Investigation into Laboratory Abrasion Test Methods for Pervious Concrete." Journal of Materials in Civil Engineering, 25(7), 886-892. https://doi.org/doi:10.1061/(ASCE)MT.1943-5533.0000683
105. Doyle, J. D. and Howard, I. L. (2016). "Characterization of Dense-Graded Asphalt With the Cantabro Test." Journal of Testing and Evaluation, 44(1), 77-88. https://doi.org/10.1520/JTE20140212
106. Du, Y., Chen, J., Han, Z. and Liu, W. (2018). "A review on solutions for improving rutting resistance of asphalt pavement and test methods." Construction and Building Materials, 168, 893-905. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2018.02.151
107. Ebnesajjad, S. (2011). "4 - Surface and Material Characterization Techniques." Handbook of Adhesives and Surface Preparation, S. Ebnesajjad, ed., William Andrew Publishing, Oxford, 31-48.
108. EPA (2020). "Waste Tire Recycling Rate Reaches 93.6%." <https://www.epa.gov.tw/eng/F7AB26007B8FE8DF/7a327b75-896b-433a-8ef9-9ee21ebf1f3e>.
109. Ezzat, H., El-Badawy, S., Gabr, A., Zaki, E.-S. I. and Breakah, T. (2016). "Evaluation of Asphalt Binders Modified with Nanoclay and Nanosilica." Procedia Engineering, 143, 1260-1267. https://doi.org/10.1016/j.proeng.2016.06.119
110. Fakher, S., Ahdaya, M., Elturki, M. and Imqam, A. (2020). "Critical review of asphaltene properties and factors impacting its stability in crude oil." Journal of Petroleum Exploration and Production Technology, 10(3), 1183-1200. https://doi.org/10.1007/s13202-019-00811-5
111. Fang, C. Q., Yu, R. E., Liu, S. L. and Li, Y. (2013). "Nanomaterials Applied in Asphalt Modification: A Review." Journal of Materials Science & Technology, 29(7), 589-594. https://doi.org/10.1016/j.jmst.2013.04.008
112. Farrar, M. J., Planche, J.-P., Grimes, R. W. and Qin, Q. (2014). "The Universal Simple Aging Test (USAT): Simulating short-and long term hot and warm mix oxidative aging in the laboratory." Proc., Asphalt pavements, Taylor & Francis Group, 79-87.
113. FHWA (2016). "The Universal Simple Aging Test, FHWA-HRT-15-054."
114. Filho, P. G. T. M., Rodrigues dos Santos, A. T., Lucena, L. C. d. F. L. and de Sousa Neto, V. F. (2019). "Rheological Evaluation of Asphalt Binder 50/70 Incorporated with Titanium Dioxide Nanoparticles." Journal of Materials in Civil Engineering, 31(10), 04019235. https://doi.org/10.1061/(asce)mt.1943-5533.0002885
115. Firouzinia, M. and Shafabakhsh, G. (2018). "Investigation of the effect of nano-silica on thermal sensitivity of HMA using artificial neural network." Construction and Building Materials, 170, 527-536. https://doi.org/10.1016/j.conbuildmat.2018.03.067
116. Francken, L. (1977). "Permanent deformation law of bituminous road mixes in repeated triaxial compression." Proc., Volume I of proceedings of 4th International Conference on Structural Design of Asphalt Pavements, Ann Arbor, Michigan, August 22-26, 1977.
117. Fu, H. Y., Xie, L. D., Dou, D. Y., Li, L. F., Yu, M. and Yao, S. D. (2007). "Storage stability and compatibility of asphalt binder modified by SBS graft copolymer." Construction and Building Materials, 21(7), 1528-1533. https://doi.org/10.1016/j.conbuildmat.2006.03.008
118. Fu, Q. H., Xu, G., Chen, X. H., Zhou, J. and Sun, F. M. (2019). "Rheological properties of SBS/CR-C composite modified asphalt binders in different aging conditions." Construction and Building Materials, 215, 1-8. https://doi.org/10.1016/j.conbuildmat.2019.04.076
119. Galooyak, S. S., Dabir, B., Nazarbeygi, A. E. and Moeini, A. (2010). "Rheological properties and storage stability of bitumen/SBS/montmorillonite composites." Construction and Building Materials, 24(3), 300-307. https://doi.org/10.1016/j.conbuildmat.2009.08.032
120. Ghanoon, S. A. and Tanzadeh, J. (2019). "Laboratory evaluation of nano-silica modification on rutting resistance of asphalt Binder." Construction and Building Materials, 223, 1074-1082. https://doi.org/10.1016/j.conbuildmat.2019.07.295
121. Ghanoon, S. A., Tanzadeh, J. and Mirsepahi, M. (2020). "Laboratory evaluation of the composition of nano-clay, nano-lime and SBS modifiers on rutting resistance of asphalt binder." Construction and Building Materials, 238, 117592.
122. Ghavibazoo, A., Abdelrahman, M. and Ragab, M. (2013). "Effect of Crumb Rubber Modifier Dissolution on Storage Stability of Crumb Rubber-Modified Asphalt." Transportation Research Record, 2370(2370), 109-115. https://doi.org/10.3141/2370-14
123. Ghavibazoo, A., Abdelrahman, M. and Ragab, M. (2013). "Effect of crumb rubber modifier dissolution on storage stability of crumb rubber–modified asphalt." Transportation research record, 2370(1), 109-115.
124. Glover, C. J., Davison, R. R., Domke, C. H., Ruan, Y., Juristyarini, P., Knorr, D. B. and Jung, S. H. (2005). "Development of a new method for assessing asphalt binder durability with field validation." Texas Dept Transport, 1872, 1-334.
125. Gokhale, S., Anderson, D., Christensen, D. and Bonaquist, R. (2005). "Simplified protocol for triaxial testing of hot mix asphalt concrete."
126. Goli, A., Ziari, H. and Amini, A. (2017). "Influence of Carbon Nanotubes on Performance Properties and Storage Stability of SBS Modified Asphalt Binders." Journal of Materials in Civil Engineering, 29(8). https://doi.org/10.1061/(asce)mt.1943-5533.0001910
127. Gong, M., Yang, J., Yao, H., Wang, M., Niu, X. and Haddock, J. E. (2018). "Investigating the performance, chemical, and microstructure properties of carbon nanotube-modified asphalt binder." Road Materials and Pavement Design, 19(7), 1499-1522.
128. Gopalakrishnan, K. and Kim, S. (2011). "Support Vector Machines Approach to HMA Stiffness Prediction." Journal of Engineering Mechanics, 137(2), 138-146. https://doi.org/doi:10.1061/(ASCE)EM.1943-7889.0000214
129. Guan, F.-L., Gui, C.-X., Zhang, H.-B., Jiang, Z.-G., Jiang, Y. and Yu, Z.-Z. (2016). "Enhanced thermal conductivity and satisfactory flame retardancy of epoxy/alumina composites by combination with graphene nanoplatelets and magnesium hydroxide." Composites Part B: Engineering, 98, 134-140. https://doi.org/10.1016/j.compositesb.2016.04.062
130. Günay, T. and Ahmedzade, P. (2020). "Physical and rheological properties of nano-TiO2 and nanocomposite modified bitumens." Construction and Building Materials, 243. https://doi.org/10.1016/j.conbuildmat.2020.118208
131. Gungat, L., Yusoff, N. I. M. and Hamzah, M. O. (2016). "Effects of RH-WMA additive on rheological properties of high amount reclaimed asphalt binders." Construction and Building Materials, 114, 665-672. https://doi.org/10.1016/j.conbuildmat.2016.03.182
132. Guo, M., Tan, Y., Luo, D., Li, Y., Farooq, A., Mo, L. and Jiao, Y. (2018). "Effect of Recycling Agents on Rheological and Micromechanical Properties of SBS-Modified Asphalt Binders." Advances in Materials Science and Engineering, 2018, 1-12. https://doi.org/10.1155/2018/5482368
133. Guo, Q., Li, L., Cheng, Y., Jiao, Y. and Xu, C. (2015). "Laboratory evaluation on performance of diatomite and glass fiber compound modified asphalt mixture." Materials & Design (1980-2015), 66, 51-59. https://doi.org/https://doi.org/10.1016/j.matdes.2014.10.033
134. Haider, S. W., Mirza, M. W., Thottempudi, A. K., Bari, J. a. and Baladi, G. Y. (2011). "Effect of Test Methods on Viscosity Temperature Susceptibility Characterization of Asphalt Binders for the Mechanistic-Empirical Pavement Design Guide." Transportation and Development Institute Congress: Integrated Transportation and Development for a Better Tomorrow, ASCE, Reston, VA. .
135. Hajj, E. Y., Aschenbrener, T. and Nener-Plante, D. (2022). "Examples of Successful Practices with State Implementation of Balanced Design of Asphalt Mixtures." Transportation Research Record, 2676(5), 44-66. https://doi.org/10.1177/03611981221084696
136. Hamedi, G. H. (2017). "Evaluating the effect of asphalt binder modification using nanomaterials on the moisture damage of hot mix asphalt." Road Materials and Pavement Design, 18(6), 1375-1394. https://doi.org/10.1080/14680629.2016.1220865
137. Han, L., Zheng, M., Li, J., Li, Y., Zhu, Y. and Ma, Q. (2017). "Effect of nano silica and pretreated rubber on the properties of terminal blend crumb rubber modified asphalt." Construction and Building Materials, 157, 277-291. https://doi.org/10.1016/j.conbuildmat.2017.08.187
138. Harvey, J., Bejarano, M. and Popescu, L. (2001). "Accelerated Pavement Testing of Rutting and Cracking Performance of Asphalt-Rubber and Conventional Asphalt Concrete Overlay Strategies." Road Materials and Pavement Design, 2(3), 229-262. https://doi.org/10.1080/14680629.2001.9689902
139. Hasan, M. M., Hasan, M. A. and Tarefder, R. A. (2022). "New Model for Predicting Rutting Performance of Superpave Asphalt Mixes." Transportation Research Record, 2676(8), 174-185. https://doi.org/10.1177/03611981221083298
140. Heitzman, M. (1992). "Design and construction of asphalt paving materials with crumb rubber modifier." Transportation Research Record, 1339.
141. Hicks, R. G., Lundy, J. R., Leahy, R. B., Hanson, D. and Epps, J. A. (1995). "Crumb Rubber Modifiers (CRM) in Asphalt Pavements: Summary of Practices in Arizona, California, and Florida." https://rosap.ntl.bts.gov/view/dot/42579
142. Hintz, C. and Bahia, H. (2013). "Simplification of Linear Amplitude Sweep Test and Specification Parameter." Transportation Research Record, 2370(1), 10-16. https://doi.org/10.3141/2370-02
143. Honarmand, M., Tanzadeh, J. and Beiranvand, M. (2019). "Bitumen and Its Modifier for Use in Pavement Engineering." S. Hemeda, ed., Sustainable Construction and Building Materials.
144. Huang, B., Mohammad, L. N., Graves, P. S. and Abadie, C. (2002). "Louisiana Experience with Crumb Rubber-Modified Hot-Mix Asphalt Pavement." Transportation Research Record, 1789(1), 1-13. https://doi.org/10.3141/1789-01
145. Imaninasab, R., Bakhshi, B. and Shirini, B. (2016). "Rutting performance of rubberized porous asphalt using Finite Element Method (FEM)." Construction and Building Materials, 106, 382-391. https://doi.org/10.1016/j.conbuildmat.2015.12.134
146. Iskender, E. (2016). "Evaluation of mechanical properties of nano-clay modified asphalt mixtures." Measurement, 93, 359-371. https://doi.org/10.1016/j.measurement.2016.07.045
147. Jadidi, K. (2019). "2-1-2019 Toughness , Tenacity and Maximum Initial Strength of Rubber Modified Asphalt Binders."
148. Jamshidi, A., Hamzah, M. O., Shahadan, Z. and Yahaya, A. S. (2015). "Evaluation of the Rheological Properties and Activation Energy of Virgin and Recovered Asphalt Binder Blends." Journal of Materials in Civil Engineering, 27(3). https://doi.org/10.1061/(asce)mt.1943-5533.0001024
149. Jeffry, S. N. A., Jaya, R. P., Hassan, N. A., Yaacob, H., Mirza, J. and Drahman, S. H. (2018). "Effects of nanocharcoal coconut-shell ash on the physical and rheological properties of bitumen." Construction and Building Materials, 158, 1-10. https://doi.org/10.1016/j.conbuildmat.2017.10.019
150. Ji, Z., Sun, L., Chen, L., Gu, W., Tian, Y. and Zhang, X. (2022). "Pavement performance and modification mechanisms of asphalt binder with nano-Al2O3." International Journal of Pavement Engineering, 1-11. https://doi.org/10.1080/10298436.2022.2136373
151. Jimenez, F. and Perez, M. (1990). "Analysis and evaluation of the performance of porous asphalt: the Spanish experience." Proc., Surface Characteristics of Roadways, International Research and Technologies: Symposium on Surface Characteristics, 1st, 1988, State College, Pennsylvania, USA.
152. Johnson, C., Bahia, H. and Wen, H. (2009). "Practical application of viscoelastic continuum damage theory to asphalt binder fatigue characterization." Asphalt Paving Technology-Proceedings, 28, 597.
153. Kaloush, K. E. (2014). "Asphalt rubber: Performance tests and pavement design issues." Construction and Building Materials, 67, 258-264. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2014.03.020
154. Kanitpong, K. and Bahia, H. (2005). "Relating Adhesion and Cohesion of Asphalts to the Effect of Moisture on Laboratory Performance of Asphalt Mixtures." Transportation Research Record 1901, 33–43. https://doi.org/doi:10.3141/1901-05
155. Karahancer, S. (2020). "Effect of aluminum oxide nano particle on modified bitumen and hot mix asphalt." Petroleum Science and Technology, 38(13), 773-784. https://doi.org/10.1080/10916466.2020.1783292
156. Karahancer, S., Enieb, M., Saltan, M., Terzi, S., Eriskin, E., Cengizhan, A. and Akbas, M. Y. (2020). "Evaluating mechanical properties of bitumen and hot mix asphalt modified with nano ferric oxide." Construction and Building Materials, 234. https://doi.org/10.1016/j.conbuildmat.2019.117381
157. Karahancer, S., Eriskin, E., Saltan, M., Terzi, S., Akbas, M. Y. and Cengizhan, A. (2019). "Moisture Susceptibility of Nano-Al2O3 and SiO2 Modified Asphalt Mixtures." Airfield and Highway Pavements, 127-135.
158. Kaya, D., Sengoz, B., Topal, A. and Raufi, H. (2019). "Assessment of Asphalt Binders and Hot Mix Asphalt Modified with Nanomaterials." Periodica Polytechnica Civil Engineering. https://doi.org/10.3311/PPci.14487
159. Kennedy, T. W. (1983). "Tensile characterization of highway pavement materials." The University of Texas at Austin FHWA/TX-84/21+183-15F Austin, Texas
160. Kennedy, T. W. and Anagnos, J. N. (1983). "Procedures for The Static and Repeated-Wad Indirect Tensile Test."
161. Khairuddin, F. H., Alamawi, M. Y., Yusoff, N. I. M., Badri, K. H., Ceylan, H. and Tawil, S. N. M. (2019). "Physicochemical and thermal analyses of polyurethane modified bitumen incorporated with Cecabase and Rediset: Optimization using response surface methodology." Fuel, 254, 115662. https://doi.org/https://doi.org/10.1016/j.fuel.2019.115662
162. Khiavi, K. A., Ghanbari, A. and Ahmadi, E. (2020). "Physical and High-Temperature Rheological Properties of PHEMA-Modified Bitumen." Journal of Materials in Civil Engineering, 32(3). https://doi.org/10.1061/(asce)mt.1943-5533.0003070
163. Kie Badroodi, S., Reza Keymanesh, M. and Shafabakhsh, G. (2020). "Experimental investigation of the fatigue phenomenon in nano silica-modified warm mix asphalt containing recycled asphalt considering self-healing behavior." Construction and Building Materials, 246. https://doi.org/10.1016/j.conbuildmat.2019.117558
164. Kim, Y. R., Castorena, C., Saleh, N. F., Braswell, E., Elwardany, M. and Rad, F. Y. (2021). "Long-Term Aging of Asphalt Mixtures for Performance Testing and Prediction: Phase III Results." National Academies of Sciences, Engineering, Medicine (NCHRP), North Carolina State University, Raleigh, NC
165. King, G., King, H., Pavlovich, R., Epps, A. L. and Kandhal, P. (1999). "Additives in asphalt." Journal of the Association of Asphalt Paving Technologists, 68, 32-69.
166. Kök, B. V. and Çolak, H. (2011). "Laboratory comparison of the crumb-rubber and SBS modified bitumen and hot mix asphalt." Construction and Building Materials, 25(8), 3204-3212. https://doi.org/10.1016/j.conbuildmat.2011.03.005
167. Krcmarik, M., Varma, S., Kutay, M. E. and Jamrah, A. (2016). "Development of Predictive Models for Low-Temperature Indirect Tensile Strength of Asphalt Mixtures." Journal of Materials in Civil Engineering, 28(11), 04016139. https://doi.org/doi:10.1061/(ASCE)MT.1943-5533.0001655
168. Kumar, A., Choudhary, R., Kandhal, P. S., Julaganti, A., Behera, O. P., Singh, A. and Kumar, R. (2020). "Fatigue characterisation of modified asphalt binders containing warm mix asphalt additives." Road Materials and Pavement Design, 21(2), 519-541. https://doi.org/10.1080/14680629.2018.1507921
169. Leng, Z., Tan, Z., Yu, H. and Guo, J. (2019). "Improvement of storage stability of SBS-modified asphalt with nanoclay using a new mixing method." Road Materials and Pavement Design, 20(7), 1601-1614. https://doi.org/10.1080/14680629.2018.1465842
170. Lesueur, D. (2009). "The colloidal structure of bitumen: Consequences on the rheology and on the mechanisms of bitumen modification." Advances in Colloid and Interface Science, 145(1), 42-82. https://doi.org/https://doi.org/10.1016/j.cis.2008.08.011
171. Li, N., Hao, P., Yao, Y. and Zhang, C. (2023). "The implementation of balanced mix design in asphalt materials: A review." Construction and Building Materials, 402, 132919. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2023.132919
172. Li, R., Xiao, F., Amirkhanian, S., You, Z. and Huang, J. (2017). "Developments of nano materials and technologies on asphalt materials – A review." Construction and Building Materials, 143, 633-648. https://doi.org/10.1016/j.conbuildmat.2017.03.158
173. Li, R. Y., Xiao, F. P., Amirkhanian, S., You, Z. P. and Huang, J. (2017). "Developments of nano materials and technologies on asphalt materials - A review." Construction and Building Materials, 143, 633-648. https://doi.org/10.1016/j.conbuildmat.2017.03.158
174. Liang, M., Xin, X., Fan, W., Wang, H., Ren, S. and Shi, J. (2017). "Effects of polymerized sulfur on rheological properties, morphology and stability of SBS modified asphalt." Construction and Building Materials, 150, 860-871. https://doi.org/10.1016/j.conbuildmat.2017.06.069
175. Liao, M. C. and Lo, T. J. (2021). "Material Characterization and Balanced Design of Asphalt-Rubber Binders." Journal of Materials in Civil Engineering, 33(1), 04020424. https://doi.org/10.1061/(Asce)Mt.1943-5533.0003504
176. Liu, H., Zhu, B., Wei, H., Chai, C. and Chen, Y. (2019). "Laboratory Evaluation on the Performance of Porous Asphalt Mixture with Steel Slag for Seasonal Frozen Regions." Sustainability, 11(24), 6924. https://www.mdpi.com/2071-1050/11/24/6924
177. Liu, Y., Zheng, M., Zhu, Y., Zhu, L., Li, H. and Liu, P. (2021). "Preparation and performance of oxidized crumb rubber (OCR)/nano-SiO2 composite-modified asphalt." Construction and Building Materials, 279. https://doi.org/10.1016/j.conbuildmat.2021.122488
178. Livneh, M. and Shklarsky, E. (1962). "The splitting test for determination of bituminous concrete strength." Technion-Israel Institute of Technology, Faculty of Civil Engineering.
179. Lo Presti, D. (2013). "Recycled Tyre Rubber Modified Bitumens for road asphalt mixtures: A literature review." Construction and Building Materials, 49, 863-881. https://doi.org/10.1016/j.conbuildmat.2013.09.007
180. Lotfi-Eghlim, A. and Karimi, M. S. (2016). "Fatigue behavior of hot mix asphalt modified with nano Al2O3 – an experimental study." Advances in Science and Technology Research Journal, 10(31), 58-63. https://doi.org/10.12913/22998624/64011
181. Lottman, R. P. (1982). "Laboratory test methods for predicting moisture-induced damage to asphalt concrete." Transportation research record(843).
182. Lu, X. and Isacsson, U. (1997). "Compatibility and storage stability of styrene-butadiene-styrene copolymer modified bitumens." Materials and Structures, 30(204), 618-626. https://doi.org/10.1007/Bf02486904
183. Luo, X., Hu, S., Zhou, F., Crockford, W. and Karki, P. (2022). "Simple Asphalt Mixture Shear Rutting Test and Mechanical Analysis." Journal of Materials in Civil Engineering, 34(9), 04022220. https://doi.org/doi:10.1061/(ASCE)MT.1943-5533.0004368
184. Mallakpour, S. and Khadem, E. (2015). "Recent development in the synthesis of polymer nanocomposites based on nano-alumina." Progress in Polymer Science, 51, 74-93. https://doi.org/10.1016/j.progpolymsci.2015.07.004
185. Mamun, A. A. and Arifuzzaman, M. (2018). "Nano-scale moisture damage evaluation of carbon nanotube-modified asphalt." Construction and Building Materials, 193, 268-275. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2018.10.155
186. Mamuye, Y., Liao, M.-C. and Do, N.-D. (2022). "Nano-Al2O3 composite on intermediate and high temperature properties of neat and modified asphalt binders and their effect on hot mix asphalt mixtures." Construction and Building Materials, 331, 127304. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2022.127304
187. Mansourian, A., Goahri, A. R. and Khosrowshahi, F. K. (2019). "Performance evaluation of asphalt binder modified with EVA/HDPE/nanoclay based on linear and non-linear viscoelastic behaviors." Construction and Building Materials, 208, 554-563. https://doi.org/10.1016/j.conbuildmat.2019.03.065
188. Marini, S. and Lanotte, M. (2021). "Waste Rubber from End-of-Life Tires in ‘Lean’Asphalt Mixtures—A Laboratory and Field Investigation in the Arid Climate Region." Polymers, 13(21), 3802.
189. Martínez-Anzures, J. D., Zapién-Castillo, S., Salazar-Cruz, B. A., Rivera-Armenta, J. L., Antonio-Cruz, R. d. C., Hernández-Zamora, G. and Méndez-Hernández, M. L. (2019). "Preparation and properties of modified asphalt using branch SBS/nanoclay nanocomposite as a modifier." Road Materials and Pavement Design, 20(6), 1275-1290. https://doi.org/10.1080/14680629.2018.1441062
190. Masoudi, S., Abtahi, S. M. and Goli, A. (2017). "Evaluation of electric arc furnace steel slag coarse aggregate in warm mix asphalt subjected to long-term aging." Construction and Building Materials, 135, 260-266. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2016.12.177
191. Mcdonald, C. H. (1975). "Elastomeric pavement repair composition for pavement failure and a method of making the same." Google Patents.
192. McGennis, R. B., Anderson, R. M., Kennedy, T. W. and Solaimanian, M. (1995). "Background of Superpave asphalt mixture design and analysis." United States. Federal Highway Administration. Office of Technology Applications,
193. McGennis, R. B., Kennedy, T. W. and Machemehl, R. B. (1984). "Stripping and moisture damage in asphalt mixtures."FHWA/TX-85/55+253-l.Austin, Texas
194. Messina, R. (1966). "Split cylinder test for evaluation of the tensile strength of asphalt concrete mixtures." University of Texas at Austin.
195. Mirzaiyan, D., Ameri, M., Amini, A., Sabouri, M. and Norouzi, A. (2019). "Evaluation of the performance and temperature susceptibility of gilsonite- and SBS-modified asphalt binders." Construction and Building Materials, 207, 679-692. https://doi.org/10.1016/j.conbuildmat.2019.02.145
196. Modarres, A. and Hamedi, H. (2014). "Effect of waste plastic bottles on the stiffness and fatigue properties of modified asphalt mixes." Materials & Design, 61, 8-15. https://doi.org/10.1016/j.matdes.2014.04.046
197. Moghadas Nejad, F., Tanzadeh, R., Tanzadeh, J. and Hamedi, G. H. (2016). "Investigating the effect of nanoparticles on the rutting behaviour of hot-mix asphalt." International Journal of Pavement Engineering, 17(4), 353-362. https://doi.org/10.1080/10298436.2014.993194
198. Mohamed, A. S. Y. (2015). "Nano-innovation in construction, a new era of sustainability." energy, 65, 28.
199. Mubaraki, M., Ali, S. I. A., Ismail, A. and Yusoff, N. I. M. (2016). "Rheological Evaluation of Asphalt Cements Modified with ASA Polymer and Al2O3 Nanoparticles." Procedia Engineering, 143, 1276-1284. https://doi.org/10.1016/j.proeng.2016.06.135
200. Navarro, F. J., Partal, P., Martinez-Boza, F. and Gallegos, C. (2004). "Thermo-rheological behaviour and storage stability of ground tire rubber-modified bitumens." Fuel, 83(14-15), 2041-2049. https://doi.org/10.1016/j.fuel.2004.04.003
201. Nciri, N., Kim, N. and Cho, N. (2017). "New insights into the effects of styrene-butadiene-styrene polymer modifier on the structure, properties, and performance of asphalt binder: The case of AP-5 asphalt and solvent deasphalting pitch." Materials Chemistry and Physics, 193, 477-495. https://doi.org/10.1016/j.matchemphys.2017.03.014
202. Nevill, C. R., Cooper, N. J. and Sutton, A. J. (2023). "A multifaceted graphical display, including treatment ranking, was developed to aid interpretation of network meta-analysis." Journal of Clinical Epidemiology, 157, 83-91. https://doi.org/https://doi.org/10.1016/j.jclinepi.2023.02.016
203. Ouyang, C., Wang, S., Zhang, Y. and Zhang, Y. (2005). "Preparation and properties of styrene–butadiene–styrene copolymer/kaolinite clay compound and asphalt modified with the compound." Polymer Degradation and Stability, 87(2), 309-317. https://doi.org/https://doi.org/10.1016/j.polymdegradstab.2004.08.014
204. Ozer, H., Al-Qadi, I. L., Lambros, J., El-Khatib, A., Singhvi, P. and Doll, B. (2016). "Development of the fracture-based flexibility index for asphalt concrete cracking potential using modified semi-circle bending test parameters." Construction and Building Materials, 115, 390-401. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2016.03.144
205. Partal, P. and Martínez-Boza, F. J. (2011). "3 - Modification of bitumen using polyurethanes." Polymer Modified Bitumen, T. McNally, ed., Woodhead Publishing, 43-71.
206. Parviz, A. (2011). "Nano materials in asphalt and tar." Australian Journal of Basic and Applied Sciences, 5(12), 3270-3273.
207. Pehlken, A. and Essadiqi, E. (2005). "CANMET materials technology laboratory."
208. Pérez‐Lepe, A., Martínez‐Boza, F. and Gallegos, C. (2007). "High temperature stability of different polymer‐modified bitumens: A rheological evaluation." Journal of applied polymer science, 103(2), 1166-1174.
209. Pirmohammad, S., Shokorlou, Y. M. and Amani, B. (2019). "Fracture resistance of HMA mixtures modified with nanoclay and Nano-Al2O3." Journal of Testing and Evaluation, 47(5), 3289-3308. https://doi.org/10.1520/JTE20180919
210. Polaczyk, P., Han, B., Huang, B., Jia, X. and Shu, X. (2018). "Evaluation of the hot mix asphalt compactability utilizing the impact compaction method." Construction and Building Materials, 187, 131-137. https://doi.org/10.1016/j.conbuildmat.2018.07.117
211. Rahman, F. and Hossain, M. (2014). "Review and analysis of Hamburg Wheel Tracking Device test data." Kansas Department of Transportation, KS-14-1.Topeka, Kansas
212. Rasmussen, R. O., Lytton, R. L. and Chang, G. K. (2002). "Method to Predict Temperature Susceptibility of an Asphalt Binder." Journal of Materials in Civil Engineering, 14(3), 246-252. https://doi.org/10.1061/(ASCE)0899-1561
213. Ren, Z., Zhu, Y., Wu, Q., Zhu, M., Guo, F., Yu, H. and Yu, J. (2020). "Enhanced Storage Stability of Different Polymer Modified Asphalt Binders through Nano-montmorillonite Modification." Nanomaterials (Basel), 10(4). https://doi.org/10.3390/nano10040641
214. Rezaei, S., Khordehbinan, M., Fakhrefatemi, S.-M.-R., Ghanbari, S. and Ghanbari, M. (2017). "The effect of nano-SiO2 and the styrene butadiene styrene polymer on the high-temperature performance of hot mix asphalt." Petroleum Science and Technology, 35(6), 553-560. https://doi.org/10.1080/10916466.2016.1270301
215. Rezaei, S., Ziari, H. and Nowbakht, S. (2016). "Low temperature functional analysis of bitumen modified with composite of nano-SiO2 and styrene butadiene styrene polymer." Petroleum Science and Technology, 34(5), 415-421. https://doi.org/10.1080/10916466.2016.1143841
216. Robert, N. H., Andy, S. and John, R. (2015). "The shell bitumen handbook." ICE Publishing, Westminster, London.
217. Sadiq Bhat, F. and Shafi Mir, M. (2021). "A study investigating the influence of nano Al2O3 on the performance of SBS modified asphalt binder." Construction and Building Materials, 271. https://doi.org/10.1016/j.conbuildmat.2020.121499
218. Salim, R. (2019). "Asphalt binder parameters and their relationship to the linear viscoelastic and failure properties of asphalt mixtures." Arizona State University.
219. Salim, R., Gundla, A., Underwood, B. S. and Kaloush, K. E. (2019). "Effect of MSCR Percent Recovery on Performance of Polymer Modified Asphalt Mixtures." Transportation Research Record, 2673(5), 308-319. https://doi.org/10.1177/0361198119841283
220. Salomon, D. and Zhai, H. (2002). "Ranking asphalt binders by activation energy for flow." Journal of Applied Asphalt Binder Technology, 2(2), 52-60.
221. Shafabakhsh, G., Aliakbari Bidokhti, M. and Divandari, H. (2020). "Evaluation of the performance of SBS/Nano-Al2O3 composite-modified bitumen at high temperature." Road Materials and Pavement Design, 22(11), 2523-2537. https://doi.org/10.1080/14680629.2020.1772351
222. Shafabakhsh, G., Mirabdolazimi, S. M. and Sadeghnejad, M. (2014). "Evaluation the effect of nano-TiO2 on the rutting and fatigue behavior of asphalt mixtures." Construction and Building Materials, 54, 566-571. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2013.12.064
223. Shah, P. M. and Mir, M. S. (2020). "Application of nanotechnology in pavement engineering: a review." Canadian Journal of Civil Engineering, 47(9), 1037-1045. https://doi.org/10.1139/cjce-2019-0395
224. Shahrah, S., Ouf, M. E. and El-Maaty, A. E. A. (2020). "Effect of Polymer Additive on Nano Materials Modified Asphalt Mixtures." Journal of Engineering Research and Reports, 20-29. https://doi.org/10.9734/jerr/2020/v11i317061
225. Shu, X. and Huang, B. S. (2014). "Recycling of waste tire rubber in asphalt and portland cement concrete: An overview." Construction and Building Materials, 67, 217-224. https://doi.org/10.1016/j.conbuildmat.2013.11.027
226. Singh, D., Kuity, A., Girimath, S., Suchismita, A. and Showkat, B. (2020). "Investigation of Chemical, Microstructural, and Rheological Perspective of Asphalt Binder Modified with Graphene Oxide." Journal of Materials in Civil Engineering, 32(11). https://doi.org/10.1061/(asce)mt.1943-5533.0003385
227. Singh, H., Choprab, T., Jainc, S., Kaurd, A. a. and Kamotrae, S. (2019). "Effect of Aggregate Type and Polymer Modification on the Performance of Bituminous Concrete Mixes." International Journal of Applied Science and Engineering 1(16), 1-13. https://doi.org/10.6703/IJASE.201906_16(1).001
228. Solaimanian, M., Harvey, J., Tahmoressi, M. and Tandon, V. (2003). "Test methods to predict moisture sensitivity of hot-mix asphalt pavements." Proc., Transportation research board national seminar. San Diego, California, 77-110.
229. Stuart, K., Mogawer, W. S. and Romero, P. (2000). "Validation of Asphalt Binder and Mixture Tests that Measure Rutting." United States. Federal Highway Administration. Office of Infrastructure …,
230. Subhy, A. (2017). "Advanced analytical techniques in fatigue and rutting related characterisations of modified bitumen: Literature review." Construction and Building Materials, 156, 28-45. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2017.08.147
231. Sukhija, M., Wagh, V. P. and Saboo, N. (2021). "Development of workability based approach for assessment of production temperatures of warm mix asphalt mixtures." Construction and Building Materials, 305, 124808. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2021.124808
232. Tabaković, A., Mohan, J. and Karač, A. (2021). "Conductive compartmented capsules encapsulating a bitumen rejuvenator." Processes, 9(8), 1361.
233. Taylor, M. A. and Khosla, N. P. (1983). "Stripping of asphalt pavements: State of the art (discussion, closure)." Transportation Research Board.
234. Teltayev, B. B., Rossi, C. O., Izmailova, G. G., Amirbayev, E. D. and Elshibayev, A. O. (2019). "Evaluating the effect of asphalt binder modification on the low-temperature cracking resistance of hot mix asphalt." Case Studies in Construction Materials, 11, e00238. https://doi.org/https://doi.org/10.1016/j.cscm.2019.e00238
235. Thives, L. P., Pais, J. C., Pereira, P. A. A., Trichês, G. and Amorim, S. R. (2013). "Assessment of the digestion time of asphalt rubber binder based on microscopy analysis." Construction and Building Materials, 47, 431-440. https://doi.org/10.1016/j.conbuildmat.2013.05.087
236. Thompson, M. R. (1966). "The split-tensile strength of lime-stabilized soils." University of Illinois Champaign, IL, USA.
237. Vamegh, M., Ameri, M. and Chavoshian Naeni, S. F. (2020). "Experimental investigation of effect of PP/SBR polymer blends on the moisture resistance and rutting performance of asphalt mixtures." Construction and Building Materials, 253. https://doi.org/10.1016/j.conbuildmat.2020.119197
238. Vamsikrishna, G. and Singh, D. (2023). "Comparison of Rutting Resistance of Plant Produced Asphalt Mixes Using Hamburg Wheel Tracker and Surrogate Simple Performance Tests: IDEAL-RT and HT-IDT." Journal of Materials in Civil Engineering, 35(12), 04023471. https://doi.org/doi:10.1061/JMCEE7.MTENG-16205
239. Venudharan, V., Biligiri, K. P., Sousa, J. B. and Way, G. B. (2016). "Asphalt-rubber gap-graded mixture design practices: a state-of-the-art research review and future perspective." Road Materials and Pavement Design, 18(3), 730-752. https://doi.org/10.1080/14680629.2016.1182060
240. Wang, L., Shan, M. and Li, C. (2020). "The cracking characteristics of the polymer-modified asphalt mixture before and after aging based on the digital image correlation technology." Construction and Building Materials, 260, 119802. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2020.119802
241. Wang, L., Wei, J. and Zhang, Y. (2009). "Development of alternative parameters to evaluate the temperature susceptibility of asphalt binders." International Journal of Pavement Research and Technology, 2(2), 75.
242. Wang, W., Cheng, Y., Chen, H., Tan, G., Lv, Z. and Bai, Y. (2019). "Study on the performances of waste crumb rubber modified asphalt mixture with eco-friendly diatomite and basalt fiber." Sustainability, 11(19), 5282.
243. Wang, Y. D., Liu, J. and Liu, J. (2023). "Integrating Quality Assurance in Balance Mix Designs for Durable Asphalt Mixtures: State-of-the-Art Literature Review." Journal of Transportation Engineering, Part B: Pavements, 149(1), 03122004. https://doi.org/doi:10.1061/JPEODX.PVENG-957
244. Way, G. B., Kaloush, K. and Biligiri, K. (2012). Asphalt-rubber standard practice guide. USA: Rubber Pavements Association.
245. Wen, H. and Bhusal, S. (2015). "Development of Phenomenological Top-Down Cracking Initiation Model for Mechanistic–Empirical Pavement Design." Transportation Research Record, 2474(1), 12-18. https://doi.org/10.3141/2474-02
246. West, R. C., Winkle, C. V., Maghsoodloo, S. and Dixon, S. (2017). "Relationships between simple asphalt mixture cracking tests using Ndesign specimens and fatigue cracking at FHWA’s accelerated loading facility." Road Materials and Pavement Design, 18(sup4), 428-446. https://doi.org/10.1080/14680629.2017.1389083
247. Witczak, M. and Mirza, M. (1999). "Development of relationships to predict Poisson’s ratio for paving materials." Inter-Team Technical Report for NCHRP.
248. Witzcak, M. W. (2002). "Simple performance test for superpave mix design." Transportation Research Board.
249. Yan, C. Q., Zhang, Y. and Bahia, H. U. (2020). "Comparison between SCB-IFIT, un-notched SCB-IFIT and IDEAL-CT for measuring cracking resistance of asphalt mixtures." Construction and Building Materials, 252, 119060. https://doi.org/10.1016/j.conbuildmat.2020.119060
250. Yang, G. C. C. (1993). "Recycling of discarded tires in Taiwan." Resources, Conservation and Recycling, 9(3), 191-199. https://doi.org/https://doi.org/10.1016/0921-3449(93)90003-X
251. Yao, H., You, Z., Li, L., Shi, X., Goh, S. W., Mills-Beale, J. and Wingard, D. (2012). "Performance of asphalt binder blended with non-modified and polymer-modified nanoclay." Construction and Building Materials, 35, 159-170. https://doi.org/10.1016/j.conbuildmat.2012.02.056
252. Yildirim, Y. (2007). "Polymer modified asphalt binders." Construction and Building Materials, 21(1), 66-72. https://doi.org/10.1016/j.conbuildmat.2005.07.007
253. Yildirim, Y., Jayawickrama, P. W., Hossain, M. S., Alhabshi, A., Yildirim, C., Smit, A. d. F. and Little, D. (2007). "Hamburg wheel-tracking database analysis." Texas Department of Transportation and Federal Highway Administration, FHWA/TX-05/0-1707-7.College Station, Texas
254. Yılmaz, B. and Ebru Gürbüz, H. (2021). "Rheological and morphological evaluation of nanoclay modified asphalt binder." Construction and Building Materials, 313, 125479. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2021.125479
255. Yilmaz, M. and Çeloğlu, M. E. (2013). "Effects of SBS and different natural asphalts on the properties of bituminous binders and mixtures." Construction and Building Materials, 44, 533-540. https://doi.org/10.1016/j.conbuildmat.2013.03.036
256. Yilmaz, M. and Yalcin, E. (2015). "The effects of using different bitumen modifiers and hydrated lime together on the properties of hot mix asphalts." Road Materials and Pavement Design, 17(2), 499-511. https://doi.org/10.1080/14680629.2015.1091376
257. Yin, F., Garita, J., Taylor, A. and West, R. (2018). "Refining the indirect tensile (IDT) Nflex Factor test to evaluate cracking resistance of asphalt mixtures for mix design and quality assurance." Construction and Building Materials, 172, 396-405. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2018.03.251
258. Yin, F., Taylor, A. J., Tran, N. and Director, P. A. (2020). "Performance testing for quality control and acceptance OF balanced mix design." The National Center for Asphalt Technology (NCAT) Report, 20-02.
259. Yin, F. and West, R. C. (2021). "Balanced mix design resource guide."
260. Yong, F., Caihua, Y., Kui, H., Yujing, C., Yu, L. and Taoli, Z. (2023). "A study of the microscopic interaction mechanism of styrene–butadiene-styrene modified asphalt based on density functional theory." Molecular Simulation, 49(12), 1203-1214. https://doi.org/10.1080/08927022.2021.1876874
261. Yu, J., Ren, Z., Yu, H., Wang, D., Svetlana, S., Korolev, E., Gao, Z. and Guo, F. (2018). "Modification of Asphalt Rubber with Nanoclay towards Enhanced Storage Stability." Materials (Basel), 11(11). https://doi.org/10.3390/ma11112093
262. Yu, R., Fang, C., Liu, P., Liu, X. and Li, Y. (2015). "Storage stability and rheological properties of asphalt modified with waste packaging polyethylene and organic montmorillonite." Applied Clay Science, 104, 1-7. https://doi.org/https://doi.org/10.1016/j.clay.2014.11.033
263. Yu, R., Liu, X., Zhang, M., Zhu, X. and Fang, C. (2017). "Dynamic stability of ethylene-vinyl acetate copolymer/crumb rubber modified asphalt." Construction and Building Materials, 156, 284-292. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2017.08.182
264. Yu, R. E., Fang, C. Q., Liu, P., Liu, X. L. and Li, Y. (2015). "Storage stability and rheological properties of asphalt modified with waste packaging polyethylene and organic montmorillonite." Applied Clay Science, 104, 1-7. https://doi.org/10.1016/j.clay.2014.11.033
265. Yusoff, N. I. M., Breem, A. A. S., Alattug, H. N. M., Hamim, A. and Ahmad, J. (2014). "The effects of moisture susceptibility and aging conditions on nano-silica/polymer-modified asphalt mixtures." Construction and Building Materials, 72, 139-147. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2014.09.014
266. Yusoff, N. I. M., Shaw, M. T. and Airey, G. D. (2011). "Modelling the linear viscoelastic rheological properties of bituminous binders." Construction and Building Materials, 25(5), 2171-2189. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2010.11.086
267. Zani, L., Giustozzi, F. and Harvey, J. (2017). "Effect of storage stability on chemical and rheological properties of polymer-modified asphalt binders for road pavement construction." Construction and Building Materials, 145, 326-335. https://doi.org/10.1016/j.conbuildmat.2017.04.014
268. Zaniewski, J. P. and Srinivasan, G. (2004). "Evaluation of indirect tensile strength to identify asphalt concrete rutting potential." Asphalt Technology Program, Department of Civil and Environmental Engineering, West Virginia University, Performed in Cooperation with the US Department of Transportation-Federal Highway Administration.
269. Zanzotto, L. and Kennepohl, G. J. (1996). "Development of rubber and asphalt binders by depolymerization and devulcanization of scrap tires in asphalt." Transportation Research Record, 1530(1), 51-58.
270. Zapién-Castillo, S., Rivera-Armenta, J. L., Chávez-Cinco, M. Y., Salazar-Cruz, B. A. and Mendoza-Martínez, A. M. (2016). "Physical and rheological properties of asphalt modified with SEBS/montmorillonite nanocomposite." Construction and Building Materials, 106, 349-356. https://doi.org/10.1016/j.conbuildmat.2015.12.099
271. Zarei, M., Salehikalam, A., Tabasi, E., Naseri, A., Worya Khordehbinan, M. and Negahban, M. (2022). "Pure mode I fracture resistance of hot mix asphalt (HMA) containing nano-SiO2 under freeze–thaw damage (FTD)." Construction and Building Materials, 351, 128757. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2022.128757
272. Zhang, D., Hou, S., Bian, J. and He, L. (2016). "Investigation of the micro-cracking behavior of asphalt mixtures in the indirect tensile test." Engineering Fracture Mechanics, 163, 416-425. https://doi.org/https://doi.org/10.1016/j.engfracmech.2016.05.020
273. Zhang, H., Yu, T. and Huang, Y. (2020). "Comparative analysis of HMA aggregate variability based on impacting and gyratory compaction." Construction and Building Materials, 242. https://doi.org/10.1016/j.conbuildmat.2020.118055
274. Zhang, H., Zhu, C., Wei, C., Duan, H. and Yu, J. (2020). "Chapter 27 - Application of functionalized nanomaterials in asphalt road construction materials." Handbook of Functionalized Nanomaterials for Industrial Applications, C. Mustansar Hussain, ed., Elsevier, 865-907.
275. Zhang, J., Faruk, A. N. M., Karki, P., Holleran, I., Hu, X. and Walubita, L. F. (2016). "Relating asphalt binder elastic recovery properties to HMA cracking and fracture properties." Construction and Building Materials, 121, 236-245. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2016.05.157
276. Zhang, S., Cao, X. Y., Ma, Y. M., Ke, Y. C., Zhang, J. K. and Wang, F. S. (2011). "The effects of particle size and content on the thermal conductivity and mechanical properties of Al2O3/high density polyethylene (HDPE) composites." Express Polymer Letters, 5(7), 581-590. https://doi.org/10.3144/expresspolymlett.2011.57
277. Zhao, S., Huang, B., Ye, X. P., Shu, X. and Jia, X. (2014). "Utilizing bio-char as a bio-modifier for asphalt cement: A sustainable application of bio-fuel by-product." Fuel, 133, 52-62. https://doi.org/https://doi.org/10.1016/j.fuel.2014.05.002
278. Zhou, F., Crockford, B., Zhang, J., Hu, S., Epps, J. and Sun, L. (2019). "Development and validation of an ideal shear rutting test for asphalt mix design and QC/QA." Proc., Association of Asphalt Paving Technologists.
279. Zhou, F., Hu, S. and Newcomb, D. (2020). "Development of a performance-related framework for production quality control with ideal cracking and rutting tests." Construction and Building Materials, 261, 120549. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2020.120549
280. Zhou, F., Im, S., Sun, L. and Scullion, T. (2017). "Development of an IDEAL cracking test for asphalt mix design and QC/QA." Road Materials and Pavement Design, 18(sup4), 405-427. https://doi.org/10.1080/14680629.2017.1389082
281. Zhou, F., Mogawer, W., Li, H., Andriescu, A. and Copeland, A. (2013). "Evaluation of fatigue tests for characterizing asphalt binders." Journal of Materials in Civil Engineering, 25(5), 610-617.
282. Zhou, F. and Scullion, T. (2002). "Discussion: Three Stages of Permanent Deformation Curve and Rutting Model." International Journal of Pavement Engineering, 3(4), 251-260. https://doi.org/10.1080/1029843021000083676
283. Zhou, F., Steger, R. and Mogawer, W. (2021). "Development of a coherent framework for balanced mix design and production quality control and quality acceptance." Construction and Building Materials, 287, 123020. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2021.123020
284. Zhou, J., Chen, X., Xu, G. and Fu, Q. (2019). "Evaluation of low temperature performance for SBS/CR compound modified asphalt binders based on fractional viscoelastic model." Construction and Building Materials, 214, 326-336. https://doi.org/10.1016/j.conbuildmat.2019.04.064
285. Zhu, J., Birgisson, B. and Kringos, N. (2014). "Polymer modification of bitumen: Advances and challenges." European Polymer Journal, 54, 18-38. https://doi.org/https://doi.org/10.1016/j.eurpolymj.2014.02.005
286. Zoorob, S. E. and Suparma, L. B. (2000). "Laboratory design and investigation of the properties of continuously graded Asphaltic concrete containing recycled plastics aggregate replacement (Plastiphalt)." Cement & Concrete Composites, 22(4), 233-242. https://doi.org/10.1016/S0958-9465(00)00026-3

無法下載圖示
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 2038/12/08 (國家圖書館:臺灣博碩士論文系統)
QR CODE