簡易檢索 / 詳目顯示

研究生: 蕭聖諠
Sheng-Hsuan Hsiao
論文名稱: 利用通道域相位梯度差值於合成發射孔徑成像中估計超音波最佳聲速
Synthetic Transmit Aperture Beamforming for Sound Velocity Estimation Using Differential Phase Gradient
指導教授: 沈哲州
Che-Chou Shen
口試委員: 沈哲州
Che-Chou Shen
李百祺
Pai-Chi Li
郭柏齡
Po-Ling Kuo
廖愛禾
Ai-Ho Liao
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 82
中文關鍵詞: 最佳成像聲速估計通道域相位梯度差合成發射孔徑波束形成
外文關鍵詞: Sound velocity estimation, Channel-domain differential phase gradient, Synthetic transmit aperture beamforming
相關次數: 點閱:159下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在超音波陣列成像系統中,由於成像聲速和組織實際聲速之間的不匹配而導致影像品質的下降。在先前的研究中已經提出利用通道域相位梯度差值來估計最佳成像聲速,但其受限於發射聚焦深度,這是因為非聚焦區中通道信號的低空間相干性造成了最佳成像聲速的高估。為了降低最佳成像聲速的估計誤差,本研究使用了合成發射孔徑波束形成方法,使整個影像深度上皆保持其通道信號的空間相干性,具體來說,將相鄰掃描線的通道信號疊加以補償非聚焦區中的聚焦品質,然後對深度和掃描線平均之後,左右子孔徑相減的相位梯度差值為零所對應到的聲速為最佳聲速。
    研究結果顯示,合成發射孔徑波束形成有效地將在模擬中的最佳聲速估計誤差從4.3 %降低到0.1 %,並在ATS仿體實驗中將最佳聲速的估計誤差從8.8 %降低到0.1 %。當我們將最佳成像聲速用於波束形成時,囊腫(Cyst)區域的對比解析度和點反射體(Wire)的橫向解析度都會是最好的。與我們先前提出的研究相比,本論文所提出的改進後的方法在高雜訊的情況下其聲速估計結果也能表現出更好的的穩定性。


    In ultrasound array imaging system, degradation of image quality occurs due to mismatch between beamforming sound velocity and tissue sound velocity. Channel-domain differential phase gradient has been previously proposed to optimize the beamforming sound velocity but its efficacy is limited to transmit focal depth. This is due to the low spatial coherence of channel signal in the non-focal region which leads to over-estimation of beamforming sound velocity. In order to alleviate the estimation bias of beamforming sound velocity, synthetic transmit aperture beamforming is proposed in this study to maintain the spatial coherence of channel data over the entire image depth. Specifically, channel signals from adjacent scanlines are combined to remedy the focusing quality in the non-focal region and then the zero of differential phase gradient between the left and right sub-apertures after depth and scanline averaging determines the optimal sound velocity. Results indicate that the synthetic transmit aperture beamforming effectively reduces the estimation bias of beamforming sound velocity from 4.3 % to 0.1 % in the simulations and from 8.8 % to 0.1 % in ATS phantom measurement. Both the contrast ratio of the cyst region and the lateral resolution of wire reflector both peak when the optimized sound velocity is utilized for beamforming. Compared to our previous work, the improved method also exhibits higher robustness of sound velocity estimation in the presence of strong random noises.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vii 表目錄 x 第一章 緒論 1 1-1醫用超音波基本原理 1 1-2陣列式延遲加總技術與成像聲速 3 1-3聲速估計之相關文獻探討 6 1-3-1於波束成像前估計最佳聲速 6 1-3-2於波束成像後估計最佳聲速 11 1-4研究動機與目的 19 第二章 研究原理 21 2-1合成發射孔徑 21 2-2通道域相位梯度差值與聲速估計 24 2-3改良式相位梯度估計方法 28 第三章 研究方法 30 3-1模擬設定 30 3-2實驗設定 32 3-3脈衝回波法設定 36 第四章 研究結果 38 4-1模擬結果 38 4-1-1 成像品質分析 38 4-1-2 系統參數效應 41 4-1-3通道域訊雜比效應 44 4-2實驗結果 47 4-2-1 仿體聲速實測 47 4-2-2 成像品質分析 47 4-2-3 仿體聲速估計 53 4-2-4 影像品質實證 56 4-2-5 離體組織聲速估計 59 第五章 討論、結論與未來工作 63 第六章 參考文獻 67

    [1] 沈哲州,「醫用超音波影上課講義」,國立台灣科技大學電機所,民國107年。
    [2] Q. Chen, J. Zagzebski, Simulation study of effects of speed of sound and attenuation on ultrasound lateral resolution, Ultrasound Med. Biol. 30 (2004) 1297–1306.
    [3] M. E. Anderson, M. S. McKeag, G. E. Trahey, The impact of sound speed errors on Medical ultrasound imaging, J. Acoust. Soc. Am. 107 (2000) 3540-3548.
    [4] C. Yoon, Y. Lee, J. H. Chang, T. K. Song, Y. Yoo, In vitro estimation of mean sound speed based on minimum average phase variance in medical ultrasound imaging, Ultrasonics 51(2011) 795–802.
    [5] S. J. Park, J. Lee, W. Y. Lee, Y. Yoo, Mean sound speed estimation with focusing quality for medical ultrasound imaging, Proc. IEEE Ultrason. Symp. (2011) 2205-2208.
    [6] M. Imbault, A. Faccinetto, B. F. Osmanski, A. Tissier, T. Deffieux, J. L. Gennisson,V. Vilgrain, M. Tanter, Robust sound speed estimation for ultrasound-based hepatic steatosis assessment, Phys. Med. Biol. 62 (2017) 3582-3598.
    [7] M. H. Cho, L. H. Kang, J. S. Kim, S. Y. Lee, An efficient sound speed estimation method to enhance image resolution, Ultrasonics 49 (2009) 774–778.
    [8] C. Yoon, Y. Lee, T. K. Song, Optimal sound speed estimation using modified nonlinear anisotropic diffusion to improve spatial resolution in ultrasound imaging, IEEE Trans. Ultrason. Ferroeletr. Freq. Control 59 (2012) 905-914.
    [9] D. Napolitano, C. H. Chou, G. McLaughlin, T. L. Ji, L. Mo, D. DeBusschere, R. Steins, Sound speed correction in ultrasound imaging, Ultrasonics 44 (2006) e43–e46.
    [10] X. Qu, T. Azuma, J. T. Liang, Y. Nakajima, Average sound speed estimation using speckle analysis of medical ultrasound data, Int. J. Comput. Assist. Radiol. Surg. 7 (2012) 891–920.
    [11] C. C. Shen and H. C. Yang, Adaptive optimization of ultrasound beamforming sound velocity using sub-aperture differential phase gradient, Ultrasonics 79 (2017) 52-59.
    [12] S.W. Flax, M. O’Donnell, Phase-aberration correction using signals from point reflectors and diffuse scatterers: basic principles, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 35 (1988) 758–767.
    [13] M. Fink and R, Mallart, The van Cittert-Zernike theorem in pulse echo measurements, J. Acoust. Soc. Amer. 90 (1991) 2718-2727.
    [14] C. Kim, C. Yoon, J. H. Park, Y. Lee, W. H. Kim, J.-M. Chang, B. I. Choi, T. K. Song and Y. M. Yoo, Evaluation of ultrasound synthetic aperture imaging using bidirectional pixel-based focusing preliminary phantom and in vivo breast study, IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 60 (2013) 2716-2724.
    [15] C. C. Shen, Y. Q. Xing, G. Jeng, Autocorrelation-based generalized coherence factor for low-complexity adaptive beamforming, Ultrasonics 72 (2016) 177–183.
    [16] J. A. Jensen, Field: A program for simulating ultrasound systems, Med. Biol. Eng. Comput. 34 (1996) 351–353.
    [17] J. E. Browne, K. V. Ramnarine, A. J. Watson, and P. R. Hoskins,. Assessment of the acoustic properties of common tissue-mimicking test phantoms, Ultrasound. Med. Biol. 29.7 (2003) 1053-1060

    QR CODE