研究生: |
許碩祐 Shuo-Yu Hsu |
---|---|
論文名稱: |
利用無跡卡爾曼濾波器實現鋰離子電池充電狀態、溫度、健康狀態及剩餘壽命之即時估測 Real-time Estimation of the State of Charge, Temperature, State of Health and Remaining Useful Life of Lithium-ion Batteries Using Unscented Kalman Filter |
指導教授: |
姜嘉瑞
Chia-Jui Chiang |
口試委員: |
姜嘉瑞
Chia-Jui Chiang 蔡大翔 Dah-Shyang Tsai 楊景龍 Jing-Long Yang |
學位類別: |
碩士 Master |
系所名稱: |
工程學院 - 機械工程系 Department of Mechanical Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 128 |
中文關鍵詞: | 鋰離子電池 、老化模型 、即時估測 、無跡卡爾曼濾波器 |
外文關鍵詞: | Lithium-ion battery, Aging model, Real-time estimation, Unscented kalman filter |
相關次數: | 點閱:1063 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究目的為基於鋰離子電池 (Lithium-ion Battery) 之等效電路模型、熱動態模型、以及所建構之參數老化模型為基礎,應用無跡卡爾曼濾波器建立一含老化效應之估測器進行鋰離子電池溫度電壓響應、荷電狀態 (State of Charge, SOC)、健康狀態 (State of Health, SOH) 及剩餘使用壽命 (Remaining Useful Life, RUL) 之即時估測。參數老化模型鑑別為透過電化學阻抗頻譜之分析實驗 (Electrochemical Impedance Spectroscopy, EIS),利用最小平方法 (Least Squares Method) 求得鋰離子電池在不同荷電狀態 (State Of Charge, SOC) 與不同操作溫度下所建構的加速老化實驗下之各等效電路參數老化趨勢。各參數包含等效串聯電阻 (Internal Resistance, Ri )、極化電阻(Polarization Resistance, Rp )、極化電容 (Polarization Capacitance, Cp )、擴散電阻 (Diffusion Resistance, Rd )、擴散電容 (Diffusion Capacitance, Cd )、下壓因子 (Depression Factor),並將各式數學模型所描述之參數老化趨勢結果進行比較,建構符合鋰離子電池參數老化趨勢之模型。最後分別以不同荷電狀態以及不同等效老化時間之電池以不同充放電行程實驗做驗證,比較含老化效應之估測器與老化數學模型模擬之結果進行比較,藉由實驗驗證結果顯示,可發現含老化效應之估測器在非線性系統問題的處裡上,其精準度較模型之模擬更為良好。
Based on the equivalent circuit model, thermal dynamic model and the constructed aging model of lithium-ion battery. This thesis uses unscented kalman filter to establish an estimator with aging effect for lithium-ion battery real-time estimation of temperature and voltage response, State of Charge (SOC), State of Health (SOH) and Remaining Useful Life (RUL). The parametric aging model is identified by the analysis experiment of electrochemical impedance spectroscopy (EIS), and the least square method is used to obtain aging parameters from the accelerated aging experiment of the lithium-ion battery model under different state of charge and different operating temperatures. Each parameter includes equivalent series resistance (Ri), polarization resistance (Rp), polarization capacitance (Cp), diffusion resistance (Rd), diffusion capacitance (Cd) and depression factor. Then use different aging mathematical models to describe the aging trend of the parameters, and establish a lithium-ion battery aging model. Finally, the batteries with different states of charge and different equivalent aging times are tested by different charge and discharge experiments. The estimator with aging effect is compared with the results of the mathematical model simulation. The experimental verification results show that it can be found that the estimator with aging effect is more accurate than the model simulation in the nonlinear system problem.
[1] 謝錦隆、張永瑞,再生能源 hcpv.sofc 高功率地利調控系統研製報告技術.核能研究所, 2009.
[2] T. HURIA, “Rechargeable lithium battery energy storage systems for vehicular applications,” 2012.
[3] “Ieee guide for the characterization and evaluation of lithiumbased batteries in stationary applications,” IEEE Std 1679.12017, pp. 1–47, 2018.
[4] E. Barsoukov and J. Macdonald, “2005, impedance spectroscopy: Theory, experiment and applications.”
[5] 王衍凱, 以擴張型卡爾曼濾波器為基礎之感應馬達無感測控制及定子轉子阻抗估測. 碩士論文, 99 年,台北.
[6] M. Jongerden and B. Haverkort, “Battery modeling,” Enschede, January, p. 38, 2008.
[7] S. Rodrigues, N. Munichandraiah, and A. Shukla, “A review of stateofcharge indication of batteries by means of ac impedance measurements,” Journal of power Sources, vol. 87, no. 12, pp. 12–20, 2000.
[8] S. Buller, “Impedance based simulation models for energy storage devices in advanced automotive power systems (ph. d. thesis),” 2003.
[9] K. Tsang, L. Sun, and W. Chan, “Identification and modelling of lithium ion battery,”Energy Conversion and Management, vol. 51, no. 12, pp. 2857–2862, 2010.
[10] D. Andre, M. Meiler, K. Steiner, H. Walz, T. SoczkaGuth, and D. Sauer, “Characterization of highpower lithiumion batteries by electrochemical impedance spectroscopy. ii: Modelling,” Journal of Power Sources, vol. 196, no. 12, pp. 5349–5356, 2011.
[11] D. H. Jeon and S. M. Baek, “Thermal modeling of cylindrical lithium ion battery during discharge cycle, ”Energy Conversion and Management, vol.52,no.89,pp.2973–2981, 2011.
[12] F. Jiang, P. Peng, and Y. Sun, “Thermal analyses of lifepo4/graphite battery discharge processes,” Journal of power sources, vol. 243, pp. 181–194, 2013.
[13] K. Onda, T. Ohshima, M. Nakayama, K. Fukuda, and T. Araki, “Thermal behavior of small lithiumion battery during rapid charge and discharge cycles,” Journal of Power sources, vol. 158, no. 1, pp. 535–542, 2006.
[14] J. Gomez, R. Nelson, E. E. Kalu, M. H. Weatherspoon, and J. P. Zheng, “Equivalent circuit model parameters of a highpower liion battery: Thermal and state of charge effects,” Journal of Power Sources, vol. 196, no. 10, pp. 4826–4831, 2011.
[15] A. Eddahech, O. Briat, and J.M. Vinassa, “Thermal characterization of a highpower lithiumion battery: Potentiometric and calorimetric measurement of entropy changes,” Energy, vol. 61, pp. 432–439, 2013.
[16] M. Broussely, P. Biensan, F. Bonhomme, P. Blanchard, S. Herreyre, K. Nechev, and R. Staniewicz, “Main aging mechanisms in li ion batteries,” Journal of power sources, vol. 146, no. 12, pp. 90–96, 2005.
[17] O. Bohlen, J. Kowal, and D. U. Sauer, “Ageing behaviour of electrochemical double layer capacitors: Part i. experimental study and ageing model,” Journal of power sources, vol. 172, no. 1, pp. 468–475, 2007.
[18] O. Bohlen, J. Kowal, and D. U. Sauer, “Ageing behaviour of electrochemical double layer capacitors: Part ii. lifetime simulation model for dynamic applications,” Journal of Power Sources, vol. 173, no. 1, pp. 626–632, 2007.
[19] Y. Zhang and C.Y. Wang, “Cyclelife characterization of automotive lithiumion batteries with linio2 cathode,” Journal of the Electrochemical Society, vol. 156, no. 7, pp. A527–A535, 2009.
[20] M. Ecker, J. B. Gerschler, J. Vogel, S. Käbitz, F. Hust, P.Dechent, and D. U. Sauer,“Development of a lifetime prediction model for lithiumion batteries based on extended accelerated aging test data,” Journal of Power Sources, vol. 215, pp. 248–257, 2012.
[21] Y. Gao, J. Jiang, C. Zhang, W. Zhang, Z. Ma, and Y. Jiang, “Lithiumion battery aging mechanisms and life model under different charging stresses,” Journal of Power Sources, vol. 356, pp. 103–114, 2017.
[22] S.Piller, M.Perrin, andA.Jossen, “Methods for stateofcharge determination and their applications,” Journal of power sources, vol. 96, no. 1, pp. 113–120, 2001.
[23] G. Plett, “Extended kalman filtering for battery management systems of lipbbased hev battery packs: Part 1. background,” Journal of Power Sources, vol. 134, pp. 252–261, 06 2004.
[24] W. He, N. Williard, C. Chen, and M. Pecht, “State of charge estimation for electric vehicle batteries using unscented kalman filtering,” Microelectronics Reliability, vol. 53, no. 6, pp. 840–847, 2013.
[25] H. He, R. Xiong, and J. Peng, “Realtime estimation of battery stateofcharge with unscented kalman filter and rtos μcosii platform,” Applied Energy, vol. 162, pp. 1410–1418, 2016.
[26] T. Wang, S. Chen, H. Ren, and Y. Zhao, “Modelbased unscented kalman filter observer design for lithiumion battery state of charge estimation,” International Journal of Energy Research, vol. 42, no. 4, pp. 1603–1614, 2018.
[27] C. Huang, Z. Wang, Z. Zhao, L. Wang, C. S. Lai, and D. Wang, “Robustness evaluation of extended and unscented kalman filter for battery state of charge estimation,” IEEE Access, vol. 6, pp. 27617–27628, 2018.
[28] 何冠廷、陳宏源、陳燦耀、方冠榮、張家欽,“儲能發展的勁旅鋰離子電池,”科學發展, vol. 0, no. 557, pp. 60–65, 2019.
[29] 黃可龍、王兆翔、劉素琴, 鋰離子電池原理與技術.五南圖書出版股份有限公司, 2010.
[30] 張智星, MATLAB 程式設計與應用.清蔚科技股份有限公司, 2001.
[31] 李宜達,控制系統設計與模擬.全華科技圖書股份有限公司, 2003.
[32] 鄭文欽,“含熱效應之超級電容等效電路模型,”100 年,台北.
[33] 曹楚南、張鑒淸,電化學阻抗譜導論, vol. 24. 科學出版社, 2002.
[34] 李根, “以無跡型卡爾曼濾波器為基礎實現鋰離子電池充電狀態及溫度之及時估測,”106 年,台北.
[35] 陳璟安,“含熱效應之鋰離子電池等效電路模型,”106 年,台北.
[36] C. Hu, G. Jain, P. Tamirisa, and T. Gorka, “Method for estimating capacity and predicting remaining useful life of lithiumion battery,” in 2014 International Conference on
Prognostics and Health Management, pp. 1–8, IEEE, 2014.
[37] 蕭文龍, 多變量分析最佳入門實用書: SPSS+ LISREAL (SEM). 碁峰資訊, 2007.
[38] R. E. Sonntag, C. Borgnakke, G. J. Van Wylen, and S. Van Wyk, Fundamentals of Thermos dynamics, vol. 6. Wiley New York, 1998.
[39] S. J. Julier and J. K. Uhlmann, “New extension of the kalman filter to nonlinear systems,” vol. 3068, pp. 182–193, 1997.