簡易檢索 / 詳目顯示

研究生: 周富笙
Fu-Sheng Chou
論文名稱: 使用高密度電感之注入鎖定除頻器
High-Density inductance Injection-Locked Frequency Dividers
指導教授: 張勝良
Sheng-Lyang Jang
鍾勇輝
Yung-Hui Chung
口試委員: 張勝良
Sheng-Lyang Jang
莊敏宏
Miin-Horng Juang
宋峻宇
Jiun-Yu Sung
溫俊瑜
Jiun-Yu Wen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 112
中文關鍵詞: 除頻器高密度電感
外文關鍵詞: divider, High-Density inductance
相關次數: 點閱:339下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在RF射頻收發機中,頻率合成器的特性非常重要,內部包含了相位偵測器(PFD)、充電幫浦(CP)、迴路濾波器(LF)、壓控振盪器(VCO)、除頻器(FD),而這其中又以壓控振盪器和注入鎖定除頻器特性為主要電路。壓控振盪器需要低相位雜訊來避免相鄰雜訊訊號經由混波轉換的干擾,壓控振盪器的輸出在經由除頻器來達到降頻的工作,因此除頻器必須具有高的操作頻寬與頻率。本篇論文提出二種除頻器,一種倍頻器。
首先,本文通過模擬和測量研究了寬頻帶注入鎖定分頻器(ILFD)在0.18μmCMOS製程中的射頻性能。 ILFD使用電感器諧振器與寄生FET電容器作為LC諧振器並聯,並且還使用電容性交叉耦合對產生負電阻來啟動振盪。電容性交叉耦合對的柵極偏置用於調整自由運行的ILFD振盪頻率。使用雙絞感應線圈的ILFD具有較低的電磁(EM)輻射水平,高電感密度,並且對接收到的EM噪聲較不敏感,並且它使用雙絞串聯的四個八邊形子環路。在3.64 mW的功耗和0 dBm的輸入功率下,從9.2 GHz到12.1GHz的鎖定範圍為2.9 GHz。在較高的功耗下,將測量雙頻帶鎖定範圍,帶有分佈電容器和寄生電容器的雙絞電感器形成分佈式雙共振諧振器,從而通過頻帶重疊實現寬鎖定範圍ILFD設計。
其次,本文設計了以0.18μmCMOS製程製造的CMOS LC-tank注入鎖定頻率三倍頻器(ILFT),並描述了ILFT的電路設計,工作原理和測量結果。差分輸入和輸出ILFT電路由一個第一諧波注入鎖定振盪器(ILO)和一個混頻器型三倍頻器組成,以向ILO提供注入信號。國際勞工組織的自由運行頻率約為6.5 GHz。直流功耗為4.24 mW,入射功率為0 dBm時,鎖定範圍為入射頻率2至2.56 GHz,以提供頻率為6 GHz至7.68 GHz的輸出信號源。設計的電路可以用作一次諧波ILO和注入鎖定倍頻器和有源倍頻器。
第三,本文設計了電流重用的CMOS注入鎖定振盪器(ILO)和功率放大器(PA)驅動器。台積電0.18μm3P6M BiCMOS製程中的ILOPA驅動器的裸片面積為1.149×1.127 mm2。在電源電壓為1.8 V時,ILO-PA驅動器的鎖定範圍為
1.5 GHz至5 GHz。該電路具有很寬的鎖定範圍,並且在低輸入功率時具有高功率增益。


In the RF radio frequency transceiver, frequency synthesizer is very important, it’s components include the phase detector (PFD), charging pump (CP), loop filter (LF), voltage controlled oscillator (VCO), frequency divider. The voltage controlled oscillator needs low phase noise to avoid the interference of adjacent noise signals through the mixing conversion. The output of the voltage controlled oscillator is reduced by the frequency divider, so the frequency divider must have high operation bandwidth and frequency. This thesis proposes two kinds of frequency dividers and one kind of frequency multiplier.
First, this thesis studies the RF performance of a wide-band divide-by-2 injection-locked frequency divider (ILFD) in the 0.18 μm CMOS process by simulation and measurement. The ILFD uses an inductor resonator to shunt with the parasitic FET capacitor as the LC resonator, and it also uses a capacitive cross-coupled pair to generate negative resistance for start-up oscillation. The gate bias of the capacitive cross-coupled pair is used to tune the free-running ILFD oscillation frequency. The ILFD using a twisted inductive coil have low electric-magnetic (EM) radiation level, high inductance density and less sensitive to received EM noise, and it uses four octagonal sub-loops in twisted series. At the power consumption of 3.64 mW and at the input power of 0 dBm, the locking range is 2.9 GHz from 9.2 GHz to 12.1GHz. At higher power consumption, dual-band locking ranges are measured, the twisted-inductor with distributed capacitor and the parasitic capacitor forms a distributed dual-resonance resonator enableing wide locking range ILFD design by band overlapping.
Secondly, this thesis designs a CMOS LC-tank injection locked frequency tripler (ILFT) fabricated in 0.18 μm CMOS process and it describes the circuit design, operation principle and measurement results of the ILFT. The differential input and output ILFT circuit is made of a first-harmonic injection-locked oscillator (ILO) and a mixer-type frequency tripler to supply an injection signal to the ILO. The free-running frequency of the ILO is around 6.5 GHz. At the dc power consumption is 4.24 mW and at the incident power of 0 dBm, the locking range is from the incident frequency 2 to 2.56 GHz to provide an output signal source from the frequency 6 GHz to 7.68 GHz. The designed circuit can be used as a first harmonic ILO and injection-locked frequency doubler and active frequency doubler.
Third, this thesis designs a current-reused CMOS injection locked oscillator (ILO) and power amplifier (PA) driver. The ILOPA driver in the TSMC 0.18 μm 3P6M BiCMOS process occupies a die area of 1.149×1.127 mm2. At supply voltage 1.8 V, the locking range of the ILO-PA driver is from 1.5 GHz to 5 GHz. The circuit has wide locking range and high power gain at low input power.

Table of Contents 中文摘要 ………………………………………………………………………….1 Abstract ………………………………………………………………………….3 誌謝 ………………………………………………………………………….5 Chapter 1 Introduction 11 1.1 Background 11 1.2 Thesis Organization 13 Chapter 2 Overview of Voltage-Controlled Oscillators 14 2.1 Introduction 14 2.2 The Oscillators Theory 15 2.2.1 One-Port (Negative Resistance) View 16 2.2.2 Two-Port (Feedback) View 18 2.3 Design Concepts of Voltage-Controlled Oscillator 20 2.3.1 Parameters of a Voltage-Controlled Oscillator 20 2.3.2 Phase Noise 22 2.3.3 Quality Factor 27 2.4 Type of the LC Oscillator 29 2.4.1 Single Transistor Oscillator 30 2.4.2 One-Port Oscillator (Negative-Gm Oscillator) 32 2.4.3 Cross-Coupled Oscillator 36 2.4.4 Complementary Cross-Coupled Topology 37 2.5 Classification of Oscillators 38 2.5.1 Ring Oscillator 39 2.5.2 LC-Tank Oscillator 43 2.6 Research in RLC-Tank 46 2.6.1 Resistors 47 2.6.2 Inductor 48 2.6.3 Transformer 53 2.6.4 Capacitor 56 2.6.5 Varactors 58 Chapter 3 Overview of Injection Locking Frequency Divider 62 3.1 Introduction 62 3.2 Principle of Injection Locked Frequency Divider 64 3.3 Locking Range 66 Chapter 4 High-inductance Density Injection-Locked Frequency Dividers 69 4.1 Introduction 69 4.2 Circuit Design 72 4.3 Measurement and Simulated 74 Chapter 5 A Subharmonic Injection-Locked Oscillator with Multi-Frequency-Band Outputs 83 5.1 Introduction 83 5.2 Circuit Design 85 5.3 Measurement and Simulated 86 Chapter 6 Integrated Current-reused Injection-Locked Oscillator and Power Amplifier Driver 91 6.1 Introduction 91 6.2 Circuit design 92 6.3 Measurement and Simulated 93 References ………………………………………………………………………103

[1] B. Razavi, RF Microelectronics, Upper Saddle River, NJ: Prentice Hall, 1998.
[2] S. Smith, Microelectronic Circuit 4th edition, Oxford University Press 1998.
[3] J. Roggers, C. Plett, Radio frequency integrated circuit design, Artech House, 2003.
[4] B. Razavi, Design of Analog CMOS Integrated Circuits, Mc Graw Hill, 2001.
[5] B. Razavi, RF microelectronics, Prentice Hall PTR, 1998.
[6] B. Razavi, Design of Integrated Circuits for Optical Communications, Mc Graw Hill.
[7] S. J. Lee, B. Kim, K. Lee, “A Novel High-Speed Ring Oscillator for Multiphase Clock Generation Using Negative Skewed Delay Scheme”, IEEE Journal of Solid-State Circuits, vol. 32, No. 2, February 1997.
[8] B. Razavi, Design of Analog CMOS Integrated Circuit, McGraw Hill, 2008.
[9] G. Gonzalez , Microwave Transistor Amplifiers Analysis And Design, Prentice Hall, 1997.
[10] 劉隽宇, 翁若敏, 運用於IEEE 802.11a CMOS 頻率合成器的低雜訊寬調變範圍之壓控振盪器, 2005.07.
[11] De Muer, M. Borremans, M.Steyaert, and G. Li Puma, “A 2GHz low-phase-noise integrated LC-VCO set with flicker-noise upconversion minimization,” IEEE J. Solid-State Circuits, vol. 35, pp. 1034-1038, 2000.
[12] S.Levantino, C. Samori, A. Bonfanti, S. L. J. Gierkink, A. L. Lacaita, and V. Boccuzzi, “Frequency dependence on bias current in 5GHz CMOS VCOs:impact on tuning range and flicker noise upconversion”, IEEE J. Solid-State Circuits, vol. 37, pp.1001-1003, 2002.
[13] T. H. Lee, The design of CMOS radio frequency integrated circuits, Cambridge University Press, 1998.
[14] H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Transactions on Parts, Hybrids, and Packaging, vol. 10, pp. 101-109, Jun 1974.
[15] C. P. Yue, C. Ryu, JackLau, T. H. Lee, and S. Wong, “A physical model for planar spiral inductors on silicon,” 1996 International Electron Devices Meeting Technical Digest, pp. 155-158, Dec. 1996.
[16] J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE J. Solid-State Circuits, vol. 35, pp. 1368-1382, Sept. 2000.
[17] A . Zolfaghari, A. Chan, and B. Razavi, “Stacked inductors and transformers in CMOS technology,” IEEE J. Solid-State Circuits, vol. 36, no. 4, pp. 620-628, Apr. 2001.
[18] T. Lee, and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 326-336, Mar. 2000.
[19] P. Andreani, S. Mattisson, “On the use of MOS varactors in RF VCOs,” IEEE Journal of Solid-State Circuits, vol. 35, no. 6, pp. 905-910, June 2000.
[20] J. Craninckx and M. S. J. Steyaert, “A 1.75-GHz/3-V dual-modulus divide-by-128/ 129 prescaler in 0.7 um CMOS,” IEEE J. Solid-State Circuits, vol. 31, pp. 890-897, July 1996.
[21] Q. Huang and R. Rogenmoser, “Speed optimization of edge-triggered CMOS circuits for gigahertz single-phase clocks,” IEEE J. Solid-State Circuits, vol. 31, pp. 456-463, Mar. 1996.
[22] J. Lee and B. Razavi, “A 40 GHz frequency divider in 0.18μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, pp. 594-601, Apr. 2004.
[23] H. R. Rategh, and T.H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, pp. 813-821, June 1999.
[24] H. D. Wohlmuth and D. Kehrer, “A high sensitivity static 2:1 frequency divider up to 27 GHz in 120 nm CMOS,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 823-826, Sept. 2002.
[25] M. Tiebout, “A 480 uW 2 GHz ultra low power dual-modulus prescaler in 0.25 um standard CMOS,” IEEE International Symposium on Circuit and System (ISCAS), vol. 5, pp. 741-744, May 2000.
[26] H. Wu, and A. Hajimiri, “A 19 GHz 0.5 mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” IEEE ISSCC Dig. Tech. Papers, pp. 412-413, Feb. 2001.
[27] R. J. Betancourt-Zamora, S. Verma, and T. H. Lee, “1 GHz and 2.8 GHz CMOS injection- locked ring oscillator prescalers,” IEEE Symposium on VLSI Circuits, pp. 47-50, June 2001.
[28] P. Kinget, R. Melville, D. Long, and V. Gopinathan, “An injection locking scheme for precision quadrature generation,” IEEE J. Solid-State Circuits, vol. 37, pp. 845-851, July 2002.
[29] J. Lee and B. Razavi, “A 40 GHz frequency divider in 0.18-μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, pp. 594-601, Apr. 2004.
[30] H. Wu, “Signal generation and processing in high-frequency/high-speed silicon- based integrated circuits,” PhD thesis, California Institute of Technology, 2003.
[31] R. Adler, “A study of locking phenomena in oscillators,” Proc. IEEE, vol. 61, pp.1380-1385, Oct. 1973.
[32] N. Itoh, Hideaki, Masuoka, S.-I. Fukase, K.- I. Hirashiki, and M. Nagata, “Twisted inductor VCO for supressing on-chip interferences,” in Proc. Asia-Pacific Microwave Conf. (APMC 2007), Dec. 2007, pp. 1–4.
[33] N. Neihart, D. Allstot, M. Miller, and P. Rakers, “Twisted inductors for low coupling mixed-signal and RF applications,” in Proc. 2008 IEEE Custom Integrated Circuits Conf. (CICC), Sep. 2008, pp. 575–578.
[34] H.-C. Lee, S.–L. Jang, H.‐C. Lee, H.‐W. Liu, and L. Y. Chen,” Divide-by-2 injection-locked frequency divider exploiting an 8-shaped inductor,” Microw Opt Technol Lett. Sept. 2020.
[35] H. -C. Lee, S. -L. Jang, Y. -H. Fan, F. -S. Chou, Y. -S. Liao and M. -H. Juang, "Divide-by-2 Injection-locked frequency dividers with twisted inductors," 2020 Int. Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM), Makung, Penghu, Taiwan, 2020, pp. 1-5,
[36] S.-L. Jang, W.-C. Cheng and C.-W. Hsue, ” A triple-resonance RLC-tank divide-by-2 injection-locked frequency divider,” Electron. Lett., vol. 52 No. 8, pp. 624–626, 2016.
[37] S.-L. Jang, H.-C. Lee and M.-H. Juang,” 2:1 injection-locked frequency dividers using multi-resonance spiral-inductor resonator,” IEEE Access, vol. 8, pp. 202240-202248, 2020.
[38] P. Martin, R. Horn and K. Ben Atar, ”A multi-turn twisted inductor for on-chip cross-talk reduction," 2016 IEEE Int. Conf. on the Science of Electrical Engineering (ICSEE), Eilat, 2016, pp. 1-5.
[39] Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang, J.-F. Lee and M.-H. Juang, “A wide locking range and low voltage CMOS direct injection-locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 299-301, May 2006.
[40] N. Mahalingam, K. Ma, K. S. Yeo, and W. M. Lim, “Coupled dual LC tanks based ILFD with low injection power and compact size,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 2, pp. 105-107, Feb 2014.
[41] S.-L. Jang, F.-B. Lin, and J.-F. Huang,” Wide-band divide-by-2 injection-locked frequency divider using MOSFET mixers DC-biased in subthreshold region,” Int. J. Circ Theor App, 43, 2081-2088, 2015.
[42] H. Wu and A. Hajimiri, “A 19 GHz 0.5mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” in IEEE Int. Solid-State Circuits Conf., pp. 412-413, Feb. 2001.
[43] S.-L. Jang, S.-S. Huang, J.-F. Lee and M.-H. Juang,” LC-tank Colpitts injection-locked frequency divider with record locking range,” IEEE Microw. Wireless Compon. Lett., pp.560-562, Aug. 2008.
[44] M. Tiebout, “A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider,” IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1170–1174, Jul. 2004.
[45] Y. Zheng and C. E. Saavedra, "A bipolar MMIC frequency tripler," IEEE Int. Carib. Conf. Devices, Circuits, and Systems, Cancun, Mexico, April 2008.
[46] J. E. Johnson, G. R. Branner, and J.-P. Mima, “Design and optimization of large conversion gain active microwave frequency triplers,” IEEE Microw.Wireless Compon. Lett., vol. 15, no. 7, pp. 457-459, July 2005.
[47] M.-C. Chen and C.-Y. Wu, “Design and analysis of CMOS subharmonic injection-locked frequency triplers,” IEEE Trans. Microw. Theory Tech., vol.56, no. 8, pp. 1869-1878, Aug. 2008.
[48] C.-N. Kuo, and T.-C. Yan, “A 60 GHz injection-locked frequency tripler with spur suppression,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 10, pp. 560–562, Oct. 2010.
[49] Zhiming Chen et al., "An 85-95.2 GHz transformer-based injection-locked frequency tripler in 65nm CMOS," IEEE MTT-S International Microwave Symposium Digest (IMS), pp.776-779, 23-28 May 2010
[50] S.-L. Jang, J.-J. Chen, C.-C. Liu and M.-H. Juang, ” Injection-locked frequency tripler with series-tuned resonator in 0.13 μm CMOS technology,” Microw. Optical Tech. Lett., pp.1107-1110, May, 2010.
[51] S. Shin, D. R. Utomo, H. Jung, S.-K. Han, J. Kim, S.-G. Lee, "Wide locking-range frequency multiplier by 1.5 employing quadrature injection-locked frequency tripler with embedded notch filtering", IEEE Trans. Microw. Theory Tech., vol. 67, no. 12, pp. 4791-4802, 2019.
[52] C.-C. Chen, J.-W. Wu and T.-F. Chiao “Dual-injection sub-harmonic injection-locked frequency tripler,” IEEE Microwave Conference Proceedings, pp. 1214-1216, Dec. 2012
[53] L. Iotti, G. LaCaille and A. M. Niknejad, "A 57–74-GHz tail-switching injection-locked frequency tripler in 28-nm CMOS," in IEEE Solid-State Circuits Letters, vol. 2, no. 9, pp. 115-118, Sept. 2019.
[54] H. Huang, M. Wu, Y. Lin, T. Huang and J. Tsai, "A 3.7 mW 75–87-GHz injection-locked frequency tripler using bandwidth-enhanced transformer-coupled topology for automatic radar applications," European Microwave Conf. (EuMC), Paris, France, Sept. 2015, pp. 399–402.
[55] Y.-L. Yeh and H.-Y. Chang, “A W-band wide locking range and low dc power injection-locked frequency tripler using transformer coupled technique,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 2, pp. 860–870, Feb. 2013.
[56] J. Zhang, H. Liu, C. Zhao, and K. Kang, “A 22.8-to-43.2GHz tuning-less injection-locked frequency tripler using injection-current boosting with 76.4% locking range for multiband 5G applications,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2018, pp. 370–372.
[57] C.-H. Tu, S.-W. Chen, H.-W. Kao and J.-W. Wu, " Mixer-based injection-locked frequency tripler," 2017 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Seoul, 2017, pp. 141-143.
[58] Hsiu-An Yeh, “Novel ultra low power ILFM by 3,” unpublished work:Report in Chip-Implementation-Center shuttle U90-99A-10, 2010.
[59] Z. Zong, M. Babaie, and R. B. Staszewski, “A 60 GHz frequency generator based on a 20 GHz oscillator and an implicit multiplier,” IEEE J. Solid-State Circuits, vol. 51, no. 5, pp. 1261–1273, May 2016
[60] C.-C. Wang, Z. Chen, and P. Heydari, “ W-band silicon-based frequency synthesizers using injection-locked and harmonic triplers,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 5, pp. 1307–1320, May 2012.
[61] J. Lindstrand, et al., ”A 1.6-2.6GHz 29 dBm injection-locked power amplifier with 64% peak PAE in 65nm CMOS,” presented at the ESSCIRC 2011 - 37th European Solid State Circuits Conference, 2011.
[62] A. Hamed, et al., ” 14 dBm, 18-20 GHz injection-locked power amplifier with 45% peak PAE in 65nm CMOS,” presented at the Proceedings of the 11th European Microwave Integrated Circuits Conferencee, 2011.
[63] J. Lin, C. C. Boon, X. Yi, and G. Feng, “A 50–59 GHz CMOS injection locking power amplifier,” IEEE Microw. Wireless Compon. Lett., vol. 25, no. 1, pp. 52–54, Jan. 2015.
[64] K. Wu, S. Muralidharan, and M. M. Hella, “A 0.4% PAE 194-GHz signal source with 1.5-mW output power in 65-nm bulk CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 27, no. 4, pp. 407–409, Apr. 2017.
[65] S. Ma, F. Ye, and J. Ren, ” A 50-110 GHz four-channel dual injection locked power amplifier with 36% PAE at 19 dBm Psat using self-start technique in 65 nm CMOS Process ,” 2018 IEEE/MTT-S Int. Microwave Symposium - IMS.
[66] C. Li and A. Liscidini, “Class-C PA-VCO cell for FSK and GFSK transmitters,” IEEE J. Solid-State Circuits, vol. 51, no. 7, pp. 1537–1546, Jul. 2016.
[67] H. Amir-Aslanzadeh et al., “Current-reused 2.4-GHz direct-modulation transmitter with on-chip automatic tuning,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 21, no. 4, pp. 732–746, Apr. 2013.
[68] K. Xu, J. Yin, P.-I. Mak, R. B. Staszewski, and R. P. Martins, “A 2.4-GHz single-pin antenna interface RF front-end with a function-reuse singleMOS VCO-PA and a push-pull LNA,” in Proc. IEEE Asian Solid-State Circuits Conf. (A-SSCC), Nov. 2018, pp. 293–294.
[69] J.-S. Paek and S. Hong, “A 29 dBm 70.7% PAE injection-locked CMOS power amplifier for PWM digitized polar transmitter,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 11, pp. 637–639, Nov. 2010.
[70] M. Danesh and J. R. Long, “Differentially driven symmetric microstrip inductors,” ” IEEE Trans. Microwave Theory Tech., vol. pp. 332-341, vol. 50, no.1, January 2002.

QR CODE