簡易檢索 / 詳目顯示

研究生: 吳長燁
Chang-Yeh Wu
論文名稱: 接近大型多輸入多輸出系統通道容量之累加預先訊息式軟性檢測技術
Accumulated soft information MMSE-SIC Detector for Approaching Massive MIMO Channel Capacity
指導教授: 王煥宗
Huan-Chun Wang
口試委員: 溫志宏
none
林敬舜
none
黃德振
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 125
中文關鍵詞: MIMO遞迴式偵測與解碼接收器MMSE-SIC累加軟式資訊軟式輸入軟式輸出EXIT chartcurve fitting通道容量
外文關鍵詞: MIMO, iterative detection and decoding, MMSE-SIC, accumulated soft information, SISO, EXIT chart, curve fitting, channel capacity
相關次數: 點閱:662下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文針對大型MIMO系統提出接近通道容量的ASI-MMSE-SIC SISO detector。ASI-MMSE-SIC SISO detector利用遞迴MMSE-SIC檢測的方式計算輸出之額外訊息,為了增加每次遞迴時其預先訊息的可靠度,ASI-MMSE-SIC SISO detector累加之前所有遞迴次數由SISO detector所反饋的輸出之額外訊息。因此ASI-MMSE-SIC SISO detector之額外訊息的互消息會高於其他現存的SISO detector之額外訊息的互消息,且不同於SISO feedback equalizer會累加從SISO decoder回饋給SISO feedback equalizer輸出之額外資訊。
    ASI-MMSE-SIC SISO detector使用EXIT chart與 curve fitting技術來設計接近通道容量的錯誤更正碼,模擬顯示若使用減少複雜度的ASI-MMSE-SIC SISO detector能更接近大型MIMO系統的通道容量。在天線數128x64的通道容量表現上,減少複雜度的ASI-MMSE-SIC SISO detector只差距通道容量約1dB內;複雜度方面,減少複雜度的ASI-MMSE-SIC SISO detector也僅為MMSE-SIC SISO detector的 2倍。整體來說,減少複雜度的ASI-MMSE-SIC SISO detector在通道容量效能與複雜度表現比其他現存SISO detectors都更適用於大型MIMO系統。


    This thesis proposes the accumulated soft information (ASI) MMSE-SIC SISO detector for approaching massive MIMO capapcity. The ASI-MMSE-SIC SISO detector computes ouput extrinsic information with iterative MMSE-SIC detection. In order to increase the reliability of a priori information in each iterative detection, ASI-MMSE-SIC SISO detector accumulates ouput extrinsic information which feedbacks from itself in all previous iterative detection. Therefore, output extrinic information of ASI-MMSE-SIC SISO detector has higher mutual information than conventional SISO detectors. Whereas, unlike SISO feedback equalizer detector accumulates ouput extrinsic information from SISO decoder feedbacks to SISO feedback equalizer.
    We showed that ASI-MMSE-SIC SISO detector can use the EXIT chart and curve fitting technique to design the near-capacity coding. Furthermore, simulation results show that the capacity offered by ASI-MMSE-SIC SISO detector of reduced complexity can approach massive MIMO capacity. As a result, the capacity gap between ASI-MMSE-SIC SISO detector of reduced complexity and channel capacity is within 1.5 dB when antenna configuration is 128 by 64. On the complexity side, ASI-MMSE-SIC SISO detector of reduced complexity is only about twice higher than MMSE-SIC SISO detector. On the whole, ASI-MMSE-SIC SISO detector of reduced complexity have distinguished trade-off between outstanding channel capacity and fine complexity outperforms other conventional SISO detectors in massive MIMO system.

    圖目錄 表目錄 第一章 緒論 1.1 研究背景 1.2 論文貢獻 1.3 論文架構 第二章 系統架構與通道容量 2.1 系統架構 2.2 通道容量與最高傳輸速度 第三章 SISO detector之容量計算 第四章 新型累加預先訊息SISO detector 4.1 演算法 4.2 複雜度計算 第五章 模擬結果分析 5.1 通道容量比較 5.2 複雜度比較 第六章 結論 參考文獻 附錄: 附錄A EXIT chart技術 附錄B IRA coding技術 B.1 IRA code encoder B.2 IRA code decoder 附錄C Curve fitting技術 C.1 Error-free condition (Convergence condition) C.2 最大容量的錯誤更正碼設計 附錄D 現存的SISO detector技術 D.1 Candidate-List-Based SISO detector技術 D.2 MMSE-SIC-based SISO detector技術 D.2.1 MMSE-SIC技術 D.2.1.1 演算法 D.2.1.2 複雜度計算 D.2.2 I-MMSE-SIC技術 D.2.2.1 演算法 D.2.2.2 複雜度計算 D.2.3 V-BLAST技術 D.2.3.1 演算法 D.2.3.2 複雜度計算 D.2.4 不同MMSE-SIC-based SISO detector之複雜度的比較 附錄E 現存的SISO detector通道容量比較

    [1] H. Taoka and K. Higuchi, “Field Experiment on 5-Gbit/s Ultra-high-speed Packet Transmission Using MIMO Multiplexing in Broadband Packet Radio Access”, NTT DoCoMo Technical Journal, vol. 9, no. 2, pp. 25-31, Sep. 2007.
    [2] J. Koivunen, “Characterisation of MIMO Propagation Channel in Multi-link Scenarios”, MS Thesis, Helsinki University of Technology, Dec. 2007.
    [3] F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, T. L. Marzetta, O. Edfors, and F. Tufvesson, “Scaling up MIMO: Opportunities and Challenges with Very Large Arrays”, IEEE Magazine Signal Processing, pp. 40-60, Jan. 2013.
    [4] T. Datta, N. Ashok Kumar, A. Chockalingam, and B. S. Rajan, “A Novel Monte-Carlo-Sampling-Based Receiver for Large-Scale Uplink Multiuser MIMO Systems”, IEEE Trans. Veh. Technol., vol. 62, no. 7, pp. 3019-3037, Sep. 2013.
    [5] M. Wu1, B. Yin, A. Vosoughi1, C. Studer, J. R. Cavallaro1, and C. Dick, “Approximate Matrix Inversion for High-Throughput Data Detection in the Large-Scale MIMO Uplink”, IEEE Symposium on ISCAS, pp. 2155-2158, 2013.
    [6] K. V. Vardhan, S. K. Mohammed, A. Chockalingam, and B. S. Rajan, “A Low-Complexity Detector for Large MIMO Systems and Multicarrier CDMA Systems”, IEEE J. Sel. Areas Commun., vol. 26, no. 3, pp. 473-485, Apr. 2008.
    [7] T. Datta, N. A. Kumar, A. Chockalingam, and B. S. Rajan, “A Novel Monte Carlo Sampling Based Receiver for Large-Scale Uplink Multiuser MIMO Systems”, IEEE Trans. Veh. Technol., vol. 62, no. 7, pp. 3019-3038, Sep. 2013.
    [8] M. Wu, B. Yin, G. Wang, C. Dick, J. R. Cavallaro, and C. Studer, “Large-Scale MIMO Detection for 3GPP LTE:Algorithms and FPGA Implementations”, IEEE J. Sel. Areas Signal Processing, pp.1-15, 2013
    [9] S. ten Brink and G. Kramer, “Design of repeat-accumulate codes for iterative detection and decoding”, IEEE Trans. Signal Processing, vol. 51, no. 11, Nov. 2003.
    [10] S. ten Brink, G. Kramer, and A. Ashikhmin, “Design of low-density parity-check codes for modulation and detection”, IEEE Trans. Commun., vol. 52, no. 4, pp. 670-678, Apr. 2004.

    [11] G. Yue and X. Wang, “Optimization of irregular repeat accumulate codes for MIMO systems with iterative receivers”, IEEE Trans. Commun., vol. 4, no. 6, pp. 2843-2854, Nov. 2005.
    [12] M. Franceschini, G. Ferrari, R. Raheli, and A. Curtoni, “Serial concatenation of LDPC and differential modulation”, IEEE J. Sel. Areas Commun., vol. 23, no. 9, pp. 1758-1768, Sep. 2005.
    [13] K. R. Narayanan, X. Wang and G Yue, “Estimating the PDF of SIC-MMSE equalizer output and its applications in designing LDPC codes with turbo equalization”, IEEE Trans. Wireless Commun., vol. 4, no. 1, pp. 278-287, Jan. 2005.
    [14] H. Lou and C. Xiao, “Soft-decision feedback turbo equalization for multilevel modulations”, IEEE Trans. Wireless Commun., vol. 59, no. 1, pp. 186-194, Jan. 2011.
    [15] J. W. Choi., A. C. Singer, J. Lee, and N, I. Cho, “Improved linear soft-in soft-out detection via soft feedback successive interference cancellation”, IEEE Trans. Comm., vol. 58, no. 3, pp. 1-12, Mar. 2010.
    [16] Y. Li and X.-G. Xia, “Iterative demodulation/decoding methods based on Gaussian approximations for lattice based space-time coded systems”, IEEE Trans. Wireless Commun., vol. 5, no. 8, pp. 1976-1983, Aug. 2006.
    [17] J. Choi, “A correlation based analysis for approximate MAP detectors and iterative receivers”, IEEE Trans. Wireless Commun., vol. 6, no. 5, pp. 1764-1773, May 2007.
    [18] M. Tuchler, R. Kotter, and A. C. Singer, “Turbo equalization: principles and new results”, IEEE Trans. Comm., vol. 50, no. 5, pp. 754-767, May 2002.
    [19] X. Wang and H.V. Poor, “Iterative (turbo) soft interference cancellation and decoding for coded CDMA”, IEEE Trans. Commun., vol. 47, no. 7, pp. 1046-1061, July 1999.
    [20] B. M. Hochwald and S. ten Brink, “Achieving Near-Capacity on a Multiple-Antenna Channel”, IEEE Trans. Commun., vol. 51, no. 3, pp. 389-399, Mar. 2003.
    [21] A. Stefanov, and T. M. Duman, “Turbo-coded modulation for systems with transmit and receive antenna diversity over block fading channels: System model, decoding approaches, and practical considerations”, IEEE J. Sel. Areas Commun., vol. 19, no. 5, pp. 958-968, Mar. 2001.
    [22] M. Sellathurai and S. Haykin, “TURBO-BLAST for wireless Communications: Theory and Experiments”, IEEE Trans. Signal Processing, vol. 50, no. 10, Oct. 2002.
    [23] H.-C. Wang, D.-J. Huang, H. G. Leon, and J-H. Wen, “Low-Complexity Butterfly Integration Structure for MMSE-SIC SISO Detector,” Wireless Personal Communications, Sep. 2013.
    [24] R. R. Lopes and J. R. Barry, “The soft-feedback equalizer for Turbo Equlaization of highly dispersive channels”, IEEE Trans. Commun., vol. 54, no. 5, pp. 783-788, May 2006.
    [25] J. Wu and Y. R. Zheng, “Low complexity soft-input soft-output decision feedback equalization,” IEEE J. Sel. Areas Commun., vol. 26, no. 2, pp. 281–289, Feb. 2008.
    [26] J. Wu, S.-Y. Leong, K.-P. Lee, C. Xiao, and J. C. Oliver, “Improved BDFE using a priori information for turbo equalization”, IEEE Trans. Wireless Commun., vol. 7, no. 1, pp. 233-240, Jan. 2008.
    [27] Wang H.C. and D. J. Huang , “Low-complexity concatenated soft-in soft-out detector for spreading OFDM systems”, IEICE Trans. Commun., vol. E95-B, no. 11, pp. 3480-2491, Nov. 2012.
    [28] Z. Cuo and P. Nilsson, “Algorithm and implementation of K-best sphere decoding for MIMO detection”, IEEE J. Sel. Areas Commun., vol. 24, no. 3, pp. 491-502, Mar. 2006.
    [29] B. Farhang-Boroujeny, H. Zhu, and Z. Shi, “Markov chain Monte Carlo algorithms for CDMA and MIMO communication systems”, IEEE Trans. Signal Processing, vol. 54, no. 5, pp. 1896-1909, May 2006.
    [30] R. R. Chen, R. Peng, A. Ashikhmin, B. Farhang-Boroujeny, “Approaching MIMO Capacity Using Bitwise Markov Chain Monte Carlo Detection”, IEEE Trans. Commun., vol. 58, no. 2, Feb. 2010.
    [31] B. Steingrimsson, Z.Q. Luo, and K. M. Wong, “Soft Quasi-Maximum- Likelihood Detection for Multiple-Antenna Wireless Channels”, IEEE Trans. Signal Processing, vol. 51, no. 11, pp. 2710-2719, Nov. 2003.
    [32] Z. Li, C. Pan, Y. Cai, and Y. Xu, “A Novel Quadratic Programming Model for Soft-Input Soft-Output MIMO Detection”, IEEE Letters. Signal Processing, vol. 14, no. 12, pp. 924-927, Dec. 2007.
    [33] I. E. Telatar, “Capacity of multi-antenna Gaussian channels,” Eur. Trans. Telecommun., vol. 10, pp. 585-595, Nov. 1999.

    QR CODE