簡易檢索 / 詳目顯示

研究生: 王坤偉
Kun-Wei Wang
論文名稱: 一種用於可調性小波視訊編碼器之影質穩定控制方法
A Temporal Quality Smooth Method for Scalable Wavelet Video Coder
指導教授: 陳建中
Jiann-Jone Chen
口試委員: 杭學鳴
Hsueh-Ming Hang
陳永昌
Yung-Chang Chen
王乃堅
Nai-Jian Wang
鄭瑞光
Ray-Guang Cheng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 67
中文關鍵詞: 影質穩定控制小波視訊可調性編碼器
外文關鍵詞: Temporal Quality Control, 3D Wavelet Video, Scalable coder
相關次數: 點閱:383下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以小波(Wavelet)為應用的編碼方式其效能優於以離散餘弦轉換(DCT)為應用的編碼。同時,小波比DCT更可輕易地編碼出來具有可調性的碼流。從影像的二維小波轉換可以輕易的延伸到三維的小波轉換,這種三維的架構可以直接地套用在視訊編碼上。然而,在這樣三維的小波編碼架構中會造成時間上的影質抖動現象。在本篇論文中,我們研究了有關於在三維小波架構中的子頻帶跟重建影像的誤差傳遞情形,以及用一個基於高位元率的編碼模型來降低這種時間抖動現象。然而,這樣的模型仍然得依據實際的架構來進行調整。如此,我們提出了一個在子頻帶與重建影像間的率-配置方法來進一步降低抖動的現象並且達到穩定影質。實驗結果指出此方法比3D-SPIHT與高位元率的編碼模型可以降低更多的影質變動量。


    The wavelets demonstrate better compression capabilities than DCT. In addition, the wavelet-based codestreams are highly scalable which cannot be accomplished easily by block-DCT coding approach. This scalability for coding and transmitting two-dimensional signals, e.g., images, can be extended to three-dimension to deal with videos. However, it suffers temporal picture quality fluctuations when using wavelet video codec (WVC) frameworks. The error propagation is unavoidable in WVC. The theoretical coding control parameters for smoothing temporal quality fluctuations can be derived with high-bit-rate coding assumptions. In deal with practical WVC codec, the signal properties may not follow high-bit-rate coding behavior such that it needs further adaptation to deal with the practical video coding. We proposed to investigate the rate-distortion relation, between the decomposed subbands and the reconstructed pictures in one GOP, under which the rate allocation for constant quality (RACQ) can be operated. The proposed rate allocation method is carried out after the initial rate allocations by theoretical parameters are performed. Simulations show that the temporal quality fluctuations can be largely reduced as compared to the theoretical one and the 3D-SPIHT. Motion compensation can also be used before performing the RACQ.

    Chapter 1 Introduction 1 1.1 Motivation 2 1.2 Organization 3 Chapter 2 Related works 4 2.1 Standard video coding 4 2.2 Scalable subband/wavelet video coding 7 2.3 Rate allocation for video coding 9 Chapter 3 Three-dimensional scalable wavelet video coding 10 3.1 Basic wavelet subband coding 10 3.2 Temporal domain coding 13 3.2.1 One-dimensional wavelet 13 3.2.2 Motion compensated temporal filtering (MCTF) 14 3.3 Spatial domain coding 18 3.3.1 Embedded bit-plane and progressive coding 18 3.3.2 Zero-tree and spatial orientation tree structures in wavelet domain 20 3.3.3 Set Partition in Hierarchical Trees (SPIHT) algorithm 21 3.4 Rate-allocation techniques 28 3.4.1 Rate-distortion theory 28 3.4.2 Lagrangian optimization 28 Chapter 4 Rate Allocation for Constant Quality 33 4.1 Error propagation realization 33 4.2 Proposed coding system 34 4.3 High-bit-rate coding model 35 4.4 Initial rate allocation 37 4.5 Rate-distortion relation in 3D WVC 38 4.6 Proposed method 39 Chapter 5 Simulation study 42 5.1 Experimental results 42 5.2 Discussions 62 Chapter 6 Conclusions and future works 64

    [1] Information Technology – Generic Coding of Moving Pictures and Associated Audio Information, International Standard: ISO/IEC 13818, Parts 1-10, 1994.
    [2] B.-J. Kim, et al, “Low bit-rate scalable video coding with 3-D set partitioning in hierarchical trees (3-D SPIHT),” IEEE Trans. on Circuits and Systems for Video Tech., vol. 10, no. 8, Aug. 2000.
    [3] G. Karlsson, M. Vetterli, “Three dimensional sub-band coding of video,” International Conference on Acoustics, Speech, and Signal Processing, vol. 2, pp. 1100-1103, April 1998.
    [4] D. Taubman, A. Zakhor, “Multirate 3-D subband coding of video,” IEEE Trans. on Image Processing, vol. 3, no. 5, Sep. 1994.
    [5] J.-R. Ohm, “Three-dimensional subband coding with motion compensation,” IEEE Trans. on Image Processing, vol. 3, no. 5, Sep. 1994.
    [6] S. Somasundaram, K.P. Subbalakshmi, “A novel 3D scalable video compression algorithm,” SPIE Image and Video Communications and Processing, vol. 5022, pp. 966-972, 2003.
    [7] V. Bottreau, M. Benetiere, B. Felts, “A fully scalable 3D subband video codec,” IEEE ICIP, vol. 2, pp. 1017-1020, Oct. 2001.
    [8] J. Xu, Z. Xiong, S. Li and Y.-Q. Zhang, “Memory-constrained 3-D wavelet transform for video coding without boundary effects,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 12, no. 9, Sep. 2002.
    [9] P. Seigneurbieux, Z. Xiong, “3-D wavelet video coding with rate-distortion optimization,” International Conf. on Infor. Tech.: Coding and Computing, pp. 322-326, April 2001.
    [10] P.-Y. Cheng, J.-L., C.-C. Jay Kuo, “Rate control for an embedded wavelet video coder,” IEEE Trans. on Circuits and Systems for Video Tech., vol. 7, no. 4, Aug. 1997.
    [11] K. K. Lin, R. M. Gray, ”Wavelet video coding with dependent optimization,” IEEE Trans. on Circuits and Systems for Video Tech., vol. 14, no. 4, Aug. 2004.
    [12] J.-R. Ohm, “Advances in scalable video coding,” Proceedings of the IEEE, vol. 93, no. 1, Jan. 2005.
    [13] K. Ramchandran, et al, “Bit allocation for dependent quantization with applications to multiresolution and MPEG video coders,” IEEE Trans. on Image Process, vol. 3, no. 5, Sep. 1994.
    [14] J.-J. Chen, D. W. Lin, “Optimal bit allocation for coding video signal over ATM networks,” IEEE Journal on Selected Areas in Communications, vol. 15, no. 6, pp. 1002-1015, Aug. 1997.

    [15] Y. Yang, S. S. Hemami, “Rate-distortion optimization for VBR environments using a motion compensated wavelet coder,” IEEE ICIP, vol. 2, pp. 352-356, Oct. 1999.
    [16] Y. Yang, S. S. Hemami, “MinMax frame rate control using a rate-distortion optimized wavelet coder,” IEEE ICIP, vol. 3, pp. 551-555, Oct. 1999.
    [17] M. F. Ringenburg, R. E. Ladner, E. A. Riskin, “Global MINMAX interframe bit allocation for embedded video coding,” IEEE Data Compression Conference, pp. 222-231, 2004.
    [18] S. G. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,” IEEE Trans. on PATTERN ANALYSIS AND MACHINE INTELLIGENCE, vol. 11. no. 7, July 1989.
    [19] VM ad-hoc group, “JPEG2000 Verification Model 6.0,” ISO/IEC JTC1/SC29/WG1N1575, Jan. 2000.
    [20] S.-J. Choi, and J. W. Woods, “Motion-compensated 3-D subband coding of video,” IEEE Trans. on Image Processing, vol. 8, no. 2, Feb. 1999.
    [21] A. A. Kassim, W. S. Lee, “Embedded color image coding using SPIHT with modified spatial oritation Trees,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 13, no. 2, pp. 203-206, Feb. 2003.
    [22] X. Zhong, “Block-based wavelet transform image coding based on the set partitioning in hierarchical trees (SPIHT) algorithm,” CNGV TR 01-02, August 2000.
    [23] M. Nadenau, J. Reichel, and M. Kunt, “Wavelet-based color image compression: exploiting the contrast sensitivity function,” IEEE Trans. on Image Processing, vol. 12, pp. 58-70, Jan. 2003.
    [24] D. S. Taubman and M. W. Marcellin, “JPEG2000: image compression fundamentals, standards and practice,” Kluwer Academic Publishers, 2002.
    [25] B.-J. Kim, W. A. Pearlman, “An embedded wavelet video coder using three-dimensional set partitioning in hierarchical trees (SPIHT),” IEEE Data Compression Conference, pp. 251-260, March 1997.
    [26] L. Luo, et al, “Rate control with smoothed temporal distortion for a 3D embedded wavelet video coder,” IEEE Conf. Information Communications & Signal Processing, Oct. 2001.
    [27] M. Antononi, et al, “ Image coding using wavelet transform,” IEEE Trans. on Image Processing, vol. 1, pp. 205-220, 1992.
    [28] K. Ramchandran and M. Vetterli, “Best wavelet packet bases in a rate-distortion sense,” IEEE Trans. on Image Processing, vol. 2, no. 4, pp. 160–175, April 1993.
    [29] Daubechies, W. Sweldens, “Factoring wavelet transforms into lifting steps,” J. of Fourier Analysis and Applications, pp. 247-269, 1998.

    QR CODE